首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of LMO doping on the structure, magnetic and magnetotransport properties of La0.8Sr0.2MnO3 (LSMO)/xLaMnO3 (LMO) has been investigated. Two types of LSMO/xLMO composites, named as SLx (low temperature sintered samples) and SHx (high temperature sintered samples) samples, were prepared by different sintering temperature and solid-state reaction method. The presence of LMO at the grain boundaries increases the disordered states at the surface of the grains and therefore the magnetization and transition temperature decrease by increasing the amount of LMO doping level. Results show that the rate of decreasing of transition temperature is much more for high temperaure sintered samples. Also the resistivity of samples increases by the increase of LMO doping level. Results also show that the LMO doping has an effect on a low field magnetoresistance (LFMR). The value of LFMR increases for low doping level of 0 ≤ x ≤ 15, for SLx samples and 0 ≤ x ≤ 10 for SHx samples. Also LFMR decreases at high doping level. The spin dependent tunneling and scattering at the interfaces of the grain boundaries are responsible for the increase of LFMR at low doping level, while reduction of LFMR at high doping level may result from the grain boundary becoming too thick for electron tunneling.  相似文献   

2.
采用溶胶凝胶法,制备了La1-xSrxMnO3(LSMO)纳米微粉。探究了Sr2+的掺杂量对LSMO晶体结构、磁学性质、电磁特性和微波吸收性能的影响。结果表明,随Sr2+含量的升高,样品的晶格常数和Mn-O-Mn键角增大,平均晶粒尺寸逐渐下降,样品出现从反铁磁性向铁磁性的转变,复介电常数呈先增大后减小的趋势。在2~18GHz内,x=0的样品在厚度为2mm时有最佳吸波效果,反射率小于-10dB对应的有效吸波频段为12.5~18GHz;Sr2+的掺杂可使吸波频段有效的向低频移动,在X波段内,x=0.2的样品在厚度为2.3mm时的有效带宽达2.6GHz,证明LSMO是一种性能优异的介电损耗型吸波材料。  相似文献   

3.
Ferroelectric thin films such as BST, PZT and PLZT are extensively being studied for the fabrication of DRAMS since they have high dielectric constant. The large and reversible remnant polarization of these materials makes it attractive for nonvolatile ferroelectric RAM application. In this paper we report the characterization of Ba0.7Sr0.3TiO3 (BST) thin films grown by pulsed laser ablation on oxide electrodes. The structural and electrical properties of the fabricated devices were studied. Growth of crystalline BST films was observed on La0.5Sr0.5CoO3 (LSCO) thin film electrodes at relatively low substrate temperature compared to BST grown on PtSi substrates. Electrical characterization was carried out by fabricating PtSi/LSCO/BST/LSCO heterostructures. The leakage current of the heterostructure is studied and a band structure is modeled based on the transport properties of the heterostructure. The dielectric constant of the BST film is found to be 630 at 100 kHz with a loss tangent of 0.04. The capacitance voltage characteristics show high tunability for BST thin films.  相似文献   

4.
5.
The Mn-doped compounds Bi1.4La0.6Sr2CaCu2Oy were prepared by sol-gel method. The structural variation was characterized systematically by X-ray diffraction (XRD), infrared (IR) spectra and Raman scattering spectra, respectively. The electrical and magnetic properties of the compounds were investigated by the temperature dependence of resistivity (R-T) and magnetic hysteresis loop (M (H)) measurements. Results indicate that the subtle change of lattice parameters has taken place in the compounds, which is attributed to CuO2 planes canting and Mn valence alternation. In the condition of preserving Bi-2212 structure, Bi1.4La0.6Sr2CaCu2−xMnxOy compound has optimal resistivity and magnetism at x = 2%, which could provide a candidate as new barrier in Josephson junction in future.  相似文献   

6.
The performance of multi-layer (1 − x) La0.8Sr0.2MnO3/x YSZ graded composite cathodes was studied as electrode materials for intermediate solid oxide fuel cells (SOFC). The thermal expansion coefficient, electrical conductivity, and electrochemical performance of multi-layer composite cathodes were investigated. The thermal expansion coefficient and electrical conductivity decreased with the increase in YSZ content. The (1 -x)La0.8Sr0.2MnO3/x YSZ composite cathode greatly increased the length of the active triple phase boundary line (TPBL) among electrode, electrolyte, and gas phase, leading to a decrease in polarization resistance and an increase in polarization current density. The polarization current density of the triple-layer graded composite cathode (0.77 A/cm2) was the highest and that of the monolayer cathode (0.13 A/cm2) was the lowest. The polarization resistance (Rp) of the triple-layer graded composite cathode was only 0.182 ω·cm2 and that of the monolayer composite cathode was 0.323 ω·cm2. The power density of the triple-layer graded composite cathode was the highest and that of the monolayer composite cathode was the lowest. The triple-layer graded composite cathode had superior performance.  相似文献   

7.
The longitudinal ultrasonic velocity (Vl), as well as resistivity has been measured in single-phase polycrystalline La1/3Sr2/3Fe1−xMnxO3 (x = 0, 0.025, 0.05) at a frequency of 10 MHz, from 20 K to 300 K. It is found that with increasing Mn-doping level, the resistivity increases and the charge ordering transition temperature TCO shifts to lower temperature. For all samples, upon cooling down from 300 K, a substantial softening in Vl above TCO and dramatic stiffening below TCO are observed. This abnormal elastic softening above TCO can be described well by the mean-field theory, which indicates that this feature is due to the electron-phonon coupling via the Jahn-Teller effect and this coupling is enhanced with the Mn doping. Below TCO, another softening in Vl is observed for x = 0, and weakens with the increasing of Mn content. This character is attributed to the breathing-type distortion of Fe-O octahedron and suggests that the charge disproportionation (CD) transition is suppressed by the Mn substitution.  相似文献   

8.
The slurries, used for preparing La1−xSrxMnO3 (LSM) films through composite sol-gel method with citric acid, were made up of LSM particles and precursor sol with different pH values. The reasons and key factors for the deterioration of the acidic slurry were analyzed by XRD, SEM and TG/DSC. Furthermore, the LSM films were fabricated with different slurries for studying their film forming abilities. It has been found that the deterioration of the acidic slurry is determined by the abundant H+ ions, generated from ionization of the citric acid. Discoloration of the alkaline sol and slurry is considered as a result of complicated complexes of Mn2+ ions, which have a good effect on the film forming ability of the alkaline slurry, together with the complexes of La3+ and Sr2+ ions. The alkaline slurry has better long-term stability than the acidic slurry, and the films made from it are more homogeneous, thicker and have lower sheet resistance.  相似文献   

9.
The La0.67Sr0.33Mn0.98Co0.02O3 plate sintered at 1250 °C shows a low field magnetoresistance (LFMR) effect under fields H < 4.6 kOe. However, the DC magnetoresistance ΔR/R0 is very small, only −1.84% under H = 4.6 kOe. The character of helical growth was observed on grain surface of La0.67Sr0.33Mn0.98Co0.02O3 phase. The LFMR is connected with the interface of grain or grain boundary, while the giant magnetoimpedance under low fields for La0.67Sr0.33Mn0.98Co0.02O3 sintered plates strongly depends upon the plate thickness. With an increase of sample thickness, the magnetoimpedance increases and the frequency, where the maximum magnetoimpedance occurs, shifts to low frequencies. A giant magnetoimpedance of −15.6% and a large AC magnetoresistance of −30.5% could be obtained under a very small field H = 600 Oe for the plate with a thickness of 3 mm.  相似文献   

10.
We investigate the effect of potassium doping on the structural, magnetic and magnetocaloric properties of La0.7Sr0.3−xKxMnO3 (x = 0.05, 0.1, 0.15 and 0.2) powder samples. Our polycrystalline compounds were synthesized using the solid-state reaction at high temperature. X-ray diffraction characterizations showed that all our studied samples crystallize in the distorted rhombohedral system with space group. With increasing potassium content, the unit cell volume exhibits a broad maximum around x = 0.15. Magnetization measurements versus temperature showed that all our samples exhibit a paramagnetic to ferromagnetic transition with decreasing temperature. The Curie temperature TC is found to decrease from 365 K for x = 0 to 328 K for x = 0.2 as well as the saturated magnetization Msp which shifts from 3.68 μB/Mn for x = 0 to 3.05 μB/Mn for x = 0.2. The critical exponent γ defined as Msp (T) = Msp(0)[1−(T/TC)]γ is found to remain almost constant and equal to 0.33 for all our samples. The maximum of magnetic entropy changes |ΔSmax| of La0.7Sr0.3−xKxMnO3 for x = 0.05 and 0.15 is found to be respectively, 1.37 and 1.2 J kg−1 K−1 under a magnetic field change of 1 T.  相似文献   

11.
《Acta Materialia》2001,49(11):1987-1992
The chemical reactivity between superconducting ceramic materials (YBa2Cu3O7−x, Bi2Sr2CaCu2O8+x and Bi2Sr2CuO6+x) and the cathode material of solid oxide fuel cells (La0.65Sr0.3MnO3) was investigated by long-term annealing experiments of pressed powder mixtures lasting two weeks at 850°C. The chemical properties at the operating temperature of a solid oxide fuel cell revealed that all three superconducting materials reacted with La0.65Sr0.3MnO3 and underwent changes in volume and density after annealing. The chemical compatibility between the superconductors and interconnect material, a ferritic steel (X 10 CrAl 18), was investigated using screen-printed thick layers of Bi2Sr2CuO6+x on steel substrates. The formation of undesirable products, especially SrCrO4, due to diffusion processes across the interface was confirmed by investigations of metallographic cross-sections. Efforts to stop the interfacial reaction by introducing a thin CuO barrier layer between the superconductor and steel did not solve the problem.  相似文献   

12.
13.
Colossal magnetoresistive manganite La0.7Sr0.3MnO3 (LSMO) films were prepared by pulsed laser deposition on three different single crystal substrates using different deposition parameters. Characterizations of their surface morphologies, structural, magnetic and magneto-transport properties show that films on MgO single crystal substrates contain higher amount of structural defects compared to those on SrTiO3 (STO) and NdGaO3 (NGO) substrates. Low deposition rate and thicker films give rise to polycrystallinity and grain boundaries. The films on MgO substrate showed a broad paramagnetic (PM) to ferromagnetic (FM) transition accompanied with metal-insulator transition (MIT) much below their Curie temperature (TC) indicating growth of strained structures due to large lattice mismatch (9%) between the substrate and the film. The deposited films on STO and NGO show least effect of substrate induced strain exhibiting sharper PM-FM transition and metallic behavior below TC. The magnetoresistance (MR) measured with 300 mT field clearly shows two contributions, one due to grain boundary tunneling and the other due to colossal MR effect. The highest low field MR effect of 17% was achieved for the film on MgO with the highest thickness and surface roughness indicating the presence of grain boundary related defects. Also a high dielectric constant was observed for the same film at room temperature up to 100 kHz frequency. Coexistence of defect induced large low-field MR and abnormally high dielectric constant can give rise to different exciting applications.  相似文献   

14.
The Sr doped lanthanum manganite coatings were prepared using La0.8Sr0.2MnO3 particles and epoxy modified polyurethane as pigment and resin matrix, respectively. The structure, morphology, surface roughness and infrared normal emissivity (?N) in the 3-5 and 8-14 μm wavebands of the samples were systematically investigated. With the increase of La0.8Sr0.2MnO3 pigment, the ?N of the coatings decreases and the ?N values in the 8-14 μm waveband are higher than those in the 3-5 μm waveband. The surface roughness has no significant effect on the infrared emissivity of LSMO coatings. For 50% LSMO coating, the sample shows variable-emissivity property in the 8-14 μm waveband and the emissivity property remains unchanged before and after ultraviolet irradiation.  相似文献   

15.
In this paper, the magnetic properties and magnetocaloric effect (MCE) of La0.7(Ca1−xAgx)0.3MnO3 (x = 0, 0.1, 0.2, 0.7, and 1) powder samples are reported. Our polycrystalline compounds were synthesized using the solid state reaction method at high temperature. Magnetization measurements versus temperature showed that all our samples exhibited a paramagnetic to ferromagnetic transition with decreasing temperature. The Curie temperature, TC, has been found to increase from ∼250 K for x = 0-270 K for x = 1. Ag doping weakens the first order phase transition, and at higher Ag doping, the phase transition is of second order. For the La0.7(Ca0.27Ag0.03)MnO3 composition, the maxima of the magnetic entropy changes from the applied magnetic field (ΔSM) at 2 and 5 T are about 4.5 and 7.75 J/kg K, respectively, at the Curie temperature of ∼263 K. The relative cooling power (RCP) values without hysteresis loss are about 102 and 271 J/kg for the applied fields of 2 and 5 T, respectively. Due to the large ΔSM, large RCP, and high Curie temperature, La0.7(Ca0.27Ag0.03)MnO3 is promising for application in potential magnetic refrigeration near room temperature.  相似文献   

16.
In this study we report the structural, electrical and magnetic properties of (1 − x)La0.67Ca0.33MnO3 (LCMO)-(x)SrTiO3(STO) composites. For this series we have observed a minute change in ferromagnetic (FM)-paramagnetic (PM) transition temperature with STO addition in LCMO matrix; however a reasonable change is observed in metal-insulator transition temperature, along with the occurrence of percolation threshold for x = 0.30 sample. Overall pattern for temperature dependence of resistivity for this series has been best-fitted using the formula 1/ρ = (1 − f)/ρPM + (f/ρFM), whereρPM and ρFM are the resistivities of the PM and FM contents in the sample and f is the volume fraction of FM phase in the sample. Investigations on magnetoresistance (MR) using magnetic field up to 3 T show enhancement of extrinsic MR in the composite samples which can be viewed in the light of spin polarized tunneling.  相似文献   

17.
The elastic and thermodynamic properties for Sr1−xLaxMoO3 (x = 0.0, 0.05, 0.1, 0.15, and 0.2) with temperature have been investigated, probably for the first time, by using modified rigid ion model (MRIM). The computed results on the elastic constants (C11, C12, and C44) are the first report on them. Using these elastic constants we have computed other elastic properties such as B, β, G′, G, E, σ, B/G ratio, Cauchy pressure (C12 − C44) and Lame's parameters (μ, λ). We have also reported the thermodynamic properties such as ?, f, θD, θD1, υ0, υ1, γ, and α. The values of Young's modulus, shear modulus and compressibility for SrMoO3 are in good agreement with the available experimental data. The concentration (x) dependence of θD in Sr1−xLaxMoO3 suggests that increased La doping drives the system effectively away from the strong electron-phonon coupling regime. Specific heat is reported in the wide temperature range and compared with the respective experimental data available in the literature. The thermal expansion coefficient of SrMoO3 is in good agreement with the other theoretical data.  相似文献   

18.
We fabricated a magnetoelectric laminate structure consisting of a magnetostrictive Tb0.3Dy0.7Fe1.92 (Terfenol-D) plate bonded to a La0.7Ca0.15Sr0.15MnO3 (LCSMO)/0.67Pb(Mg1/3Nb2/3)O3-0.33PbTiO3 (PMN-PT) structure where a LCSMO film was epitaxially grown on a PMN-PT single crystal substrate. When a dc magnetic field is applied perpendicular to the film plane, the magnetoresistance of the LCSMO film in the paramagnetic (ferromagnetic) state for the LCSMO/PMN-PT/Terfenol-D structure is larger (smaller) than that for the LCSMO/PMN-PT structure without Terfenol-D. These effects are caused by the magnetostriction-induced in-plane compressive strain in the Terfenol-D, which are transferred to the PMN-PT substrate, leading to a reduction in the in-plane tensile strain of the epitaxial LCSMO film and thereby modifying the magnetoresistance of the film.  相似文献   

19.
The crystal structures, phase compositions and the microwave dielectric properties of the xLa(Mg1/2Ti1/2)O3-(1 − x)Ca0.8Sr0.2TiO3 composites prepared by the conventional solid state route have been investigated. The formation of solid solution is confirmed by the XRD patterns. Doping with B2O3 (0.5 wt.%) can effectively promote the densification and the dielectric properties of xNd(Mg1/2Ti1/2)O3-(1 − x)Ca0.6La0.8/3TiO3 ceramics. It is found that xNd(Mg1/2Ti1/2)O3-(1 − x)Ca0.6La0.8/3TiO3 ceramics can be sintered at 1375 °C, due to the liquid phase effect of B2O3 addition observed by Scanning Electronic Microscopy. At 1375 °C, 0.4Nd(Mg1/2Ti1/2)O3-0.6Ca0.6La0.8/3TiO3 ceramics with 1 wt.% B2O3 addition possesses a dielectric constant (?r) of 49, a Q × f value of 13,000 (at 8 GHz) and a temperature coefficients of resonant frequency (τf) of 1 ppm/°C. As the content of Nd(Mg1/2Ti1/2)O3 increases, the highest Q × f value of 20,000 GHz for x = 0.9 is achieved at the sintering temperature 1400 °C.  相似文献   

20.
We have studied magnetization, ac susceptibility, resistivity and magnetoresistance in mechanically milled La0.67Sr0.33MnO3. The material with grain size micron to nanometer scale has stabilized in rhombohedral crystal structure with space group R3C. We have found various grain size effects, e.g., decrease of ferromagnetic moment, increase of surface spin disorder, and appearance of insulator/semiconductor type resistivity. In addition to these conventional features, we have identified a magnetic anomaly at 45 K in bulk sample. Ferromagnetic to paramagnetic transition temperature (TC) is above room temperature for all samples. The samples are typical soft ferromagnet that transformed from multi-domain state to single domain state in nanocrystalline samples. The remarkable observation is that low temperature freezing of ferromagnetic domains/clusters does not follow the conventional spin glass features. Experimental results clearly showed the enhancement of high field magnetoresistance in nanocrystalline samples below 200 K, whereas low field magnetoresistance gradually decreases above 200 K and almost absent at 300 K. We have discussed few more magnetic and electrical changes, highly relevant to the progress of nanomaterial research in ferromagnetic manganites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号