首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Foot-and-mouth disease (FMD) is a highly contagious and economically devastating vesicular disease of cloven-hoofed animals. In this study, we constructed and characterized the immune responses and vaccine efficacy conferred by the recombinant adenovirus co-expressing VP1 of FMDV and porcine interferon alpha as fusion protein (rAd-pIFNalpha-VP1). Six groups of female BALB/c mice each with 18 were inoculated subcutaneously twice 2-week intervals with the recombinant adenoviruses. The results showed that the levels of humoral and cell-mediated immune responses in the group inoculated with rAd-pIFNalpha-VP1 were significantly higher than those in the group inoculated with rAd-VP1+rAd-pIFNalpha (P<0.05). Then four groups of guinea pigs each with six were inoculated two times at 2-week intervals intramuscularly with rAd-pIFNalpha-VP1, commercial inactivated FMD vaccine, wild-type adenovirus (wtAd) or PBS, and the protective efficacy of rAd-pIFNalpha-VP1 was determined. The results indicated that all the guinea pigs vaccinated with rAd-pIFNalpha-VP1 as well as inactivated FMD vaccine were protected from FMDV challenge, even though the levels of neutralizing antibodies (1:32-1:40) of the animals vaccinated with rAd-pIFNalpha-VP1 was lower than that in the group inoculated with inactivated FMD vaccine (1:64-1:128). It demonstrated that the newly recombinant adenovirus rAd-pIFNalpha-VP1 might further be an attractive candidate vaccine for preventing FMDV infection in swine.  相似文献   

2.
Four groups of six cattle were vaccinated from two to five times at 6 month intervals with two different trivalent FMD vaccines licensed in the given year. The FMDV type A strains in the vaccines designated A5F and A5B were closely related. Three months after the last vaccination the cattle were challenged by contact with animals inoculated with the original field strain A5B. The inoculated animals developed typical FMD symptoms with vesicles in the mouth and on the feet. Those cattle which had received vaccines that did not contain strain A5B also became severely sick, even after five vaccinations. Animals vaccinated twice with type B containing vaccine were also not completely protected. A safe protection can obviously only be achieved for fairly short periods of time if vaccine and challenge strain are homologous. It is proposed to change the rules of licensing, to speed up the procedure to vaccinate in cases of outbreaks. The need for further research, especially into improving vaccines, is stressed.  相似文献   

3.
OBJECTIVE: To examine the effects of DNA dose, site of vaccination, and coadministration of a cytokine DNA adjuvant on efficacy of H1-subtype swine influenza virus hemagglutinin (HA) DNA vaccination of pigs. ANIMALS: 24 eight-week-old mixed-breed pigs. PROCEDURE: 2 doses of DNA were administered 27 days apart by use of a particle-mediated delivery system (gene gun). Different doses of HA DNA and different sites of DNA administration (skin, tongue) were studied, as was coadministration of porcine interleukin-6 (pIL-6) DNA as an adjuvant. Concentrations of virus-specific serum and nasal mucosal antibodies were measured throughout the experiment, and protective immunity was assessed after intranasal challenge with homologous H1N1 swine influenza virus. RESULTS: Increasing the dose of HA DNA, but not coadministration of pIL6 DNA, significantly enhanced virus-specific serum antibody responses. Pigs that received DNA on the ventral surface of the tongue stopped shedding virus 1 day sooner than pigs vaccinated in the skin of the ventral portion of the abdomen, but none of the vaccinated pigs developed detectable virus-specific antibodies in nasal secretions prior to challenge, nor were they protected from challenge exposure. Vaccinated pigs developed high virus-specific antibody concentrations after exposure to the challenge virus. CONCLUSIONS AND CLINICAL RELEVANCE: Co-administration of pIL-6 DNA did not significantly enhance immune responses to HA DNA vaccination or protection from challenge exposure. However, HA DNA vaccination of pigs, with or without coadministration of pIL-6 DNA, induced strong priming of the humoral immune system.  相似文献   

4.
以豚鼠为试验动物模型,探索一种应用豚鼠替代牛进行牛口蹄疫Asia-1型灭活疫苗效力检验的方法.豚鼠和牛同步对6批牛口蹄疫Asia-1型灭活疫苗进行PD50效力检验,其中2批进行重复性试验.豚鼠分别在免疫后7、14、21和28天采血检测Asia-1型的中和抗体水平.统计学分析显示,测定的豚鼠PD50和牛PD50之间具有极...  相似文献   

5.
A good correlation exists between specific neutralising antibody titre and protection against challenge with foot-and-mouth disease virus (FMDV) in infected or virus-vaccinated cattle, but not in the case of animals immunised with synthetic FMDV peptides. Therefore, mechanisms other than simple neutralisation are likely to be important in vivo. Antibody affinity may influence the protective capacity of sera from immunised animals and experiments were carried out to measure the functional affinity for synthetic FMDV peptide of sera from guinea pigs and cattle given various synthetic vaccines. In guinea pigs given a single dose of synthetic vaccine, antibody affinity increased with time after immunisation. In cattle, however, administration of a second dose of peptide 21 days after the first markedly retarded the process of affinity maturation. For guinea pig sera of equivalent neutralising activity, those of higher functional affinity had higher protective indices than those of lower functional affinity. Knowledge of the importance of antibody affinity in protection against FMD is important for an improved understanding of the mechanisms of protection and for the design of novel vaccines.  相似文献   

6.
Epitope-based vaccines are always questioned for their cross-protection against the antigenically variable foot-and-mouth disease virus (FMDV). In this study, we proved the cross-protection effect of a multi-epitope vaccine incorporated with poly(I:C) against three topotypes of O type FMDV. A total of 45 naïve pigs were vaccinated with different doses of multi-epitope protein vaccine incorporated with poly(I:C). At 28 days post-vaccination, 45 vaccinated and 6 unvaccinated control pigs (two pigs for each group) were challenged with three topotypes of virulent O type FMDV, namely, O/Mya/98 (Southeast Asia topotype), O/HN/CHA/93 (Cathay topotype) and O/Tibet/CHA/99 (PanAsia topotype) strains. All unvaccinated pigs developed generalised FMD clinical signs. Results showed that all pigs (n = 15) conferred complete protection against the O/Mya/98 and O/HN/CHA/93 FMDV strains, 11 of which were protected against the O/Tibet/CHA/99 FMDV strain. The 50% protective dose values of the vaccine against the O/Mya/98, O/HN/CHA/93 and O/Tibet/CHA/99 FMDV strains were 15.59, 15.59 and 7.05, respectively. Contact challenge experiment showed that transmission occurred from the donors to the unvaccinated but not to vaccinated pigs. These results showed that vaccination with multi-epitope protein vaccine incorporated with poly(I:C) can efficiently prevent FMD in pigs.  相似文献   

7.
Foot-and-mouth disease (FMD) is a highly contagious and economically devastating disease of cloven-hoofed animals in the world. The disease can be effectively controlled by vaccination of susceptible animals with the conventional inactivated vaccine. However, one major concern of the inactivated FMD virus (FMDV) vaccine is that it does not allow serological discrimination between infected and vaccinated animals, and therefore interferes with serologic surveillance and the epidemiology of disease. A marker vaccine has proven to be of great value in disease eradication and control programs. In this study, we constructed a marker FMDV containing a deletion of residues 93 to 143 in the nonstructural protein 3A using a recently developed FMDV infectious cDNA clone. The marker virus, r-HN/3A93–143, had similar growth kinetics as the wild type virus in culture cell and caused a symptomatic infection in pigs. Pigs immunized with chemically inactivated marker vaccine were fully protected from the wild type virus challenge, and the potency of this marker vaccine was 10 PD50 (50% pig protective dose) per dose, indicating it could be an efficacious vaccine against FMDV. In addition, we developed a blocking ELISA targeted to the deleted epitope that could clearly differentiate animals infected with the marker virus from those infected with the wild type virus. These results indicate that a marker FMDV vaccine can be potentially developed by deleting an immunodominant epitope in NSP 3A.  相似文献   

8.
OBJECTIVE: To construct a genetically modified nontoxigenic Pasteurella multocida toxin (PMT) and examine its immunoprotective activity against challenge exposure with wild-type PMT in pigs. ANIMALS: 5 healthy pigs. PROCEDURE: A nontoxigenic PMT was created by replacing the serine at position 1164 with alanine (S1164A) and the cysteine at position 1165 with serine (C1165S). Toxic activity was determined by use of the guinea pig skin test and mouse lethality test. Three pigs were vaccinated twice with the modified PMT, and the remaining 2 pigs served as nonvaccinated control animals. Vaccinated and control pigs were challenge exposed with wild-type PMT. Pigs were euthanatized and necropsied on day 14 after challenge exposure. Turbinate atrophy was examined macroscopically and assigned a score. Serum anti-PMT antibodies were determined by use of an ELISA. RESULTS: The genetically modified PMT was characterized by a total lack of toxic activity. Pigs vaccinated with the modified PMT became seropositive; in contrast, control pigs remained seronegative. Necropsy revealed that the 2 control pigs had moderate and severe turbinate atrophy, respectively, whereas the 3 vaccinated pigs did not have any lesions in the turbinates or abnormalities in other organs. CONCLUSIONS AND CLINICAL RELEVANCE: Modification by use of S1164A and C1165S leads to a complete loss of toxic effects of PMT without impairment of the ability to induce protective immunity in pigs. Analysis of these results suggests that genetically modified PMT may represent a good candidate for use in developing a vaccine against progressive atrophic rhinitis in pigs.  相似文献   

9.
Five strains of Clostridium septicum were used to prepare bacterins, bacterin-toxoids, toxoid, and combinations of bacterins or bacterin-toxoids. These preparations were tested for immunogenicity in guinea pigs vaccinated subcutaneously with 1.0 ml of product. Usually, a second vaccination was given 21 to 24 days later. The immunity of groups of vaccinated guinea pigs was challenged with as many as 22 strains of C septicum. When challenge exposed with homologous strains at 21 to 24 days after one vaccination or 10 t0 18 days after a second vaccination, 60% to 100% of the guinea pigs in each group survived. Demonstrable cross-protection among strains of C septicum varied from none to 100% protection in vaccinated guinea pigs. A combination of bacterin-toxoid prepared from four selected strains protected 70% to 100% of the vaccinated guinea pigs challenge exposed with 21 strains. Duration-of-immunity studies demonstrated a twofold to fourfold decrease in protection when the vaccination-to-challenge interval was extended an additional 3 weeks. Strains of C septicum do not have an effective common immunogen and the stimulated immunity appears to be of short duration. Antitoxin was demonstrated to be less important than other factors in protecting against C septicum infection.  相似文献   

10.
Five adult guinea pigs were inoculated intraepithelially in the right hindfoot pad with foot-and-mouth disease virus. Animals were euthanatized with carbon dioxide at 4, 10, 24, 48, and 72 hours post-inoculation. Generalized disease developed in the guinea pigs, as evidenced by depression and inappetance by 24 hours post-inoculation and by the formation of vesicles in the noninoculated hindfoot pad by 48 hours post-inoculation. By in situ hybridization, using a 500 base pair biotinylated RNA probe, viral nucleic acid was detected in the noninoculated fore- and hindfoot pads as early as 10 hours post-inoculation, well before any pathologic changes associated with foot-and-mouth disease virus infection were detected. These tissues remained consistently positive for the presence of viral nucleic acid up to the end of the experiment. At this time, in the forefoot pad, even though virus had first been detected with certainty in that tissue 62 hours previously, there was still no microscopic evidence of foot-and-mouth disease virus-induced damage in the histologic section. Similarly, tongue tissue was positive by in situ hybridization at 4, 48, and 72 hours post-inoculation, yet there was never any microscopic evidence of degeneration or vesicle formation. From this preliminary study, it appears that, in the guinea pig, the virus is widely disseminated to foot pads and tongue, with epidermal lesions resulting only in selected areas.  相似文献   

11.
Cross-protection studies between the feline infectious peritonitis (FIP) and the porcine transmissible gastroenteritis (TGE) viruses were conducted in cats, pigs and pregnant gilts. Cats vaccinated with TGE virus developed neutralizing antibodies against TGE virus and low titer antibody against FIP virus detected by an indirect fluorescent antibody technique but were not protected against a virulent FIP virus challenge. Baby pigs and pregnant gilts vaccinated with FIP virus did not develop detectable antibodies to TGE virus. Nevertheless, it appeared that vaccination of swine with FIP virus conferred some immunity against TGE virus infection. Seventeen-day-old pigs vaccinated with two doses of FIP virus had a 67% survival rate following a virulent TGE virus challenge, and 75% of the 3-day-old pigs suckling either FIP or TGE-virus-vaccinated gilts survived virulent TGE virus infection in contrast to 0% survival of baby pigs suckling unvaccinated gilts.  相似文献   

12.
Foot-and-mouth disease virus (FMDV)-induced ultrastructural changes in guinea-pig tongue, heelpad, mammary and liver tissues were examined using scanning and transmission electron microscopy. FMDV infection caused cell rounding and the release of virus in membrane limited vesicles in the animal tissues similar to that seen in other work in cell cultures. Microfilaments were present which may be responsible for cell rounding. Immunoperoxidase labeling revealed the attachment of the virus-infection associated (VIA) antigen to the smooth vacuoles of mammary and liver tissues, and to milk fat globules. The electron microscope immunoperoxidase procedure increased the sensitivity of detection sufficiently to allow the visualization of VIA antigen in tissues not previously shown to have the antigen. It is postulated that the release of the smooth vacuoles from the liver cells stimulates the animal's immune response to the VIA antigen.  相似文献   

13.
Weaned pigs were immunised with a live attenuated Salmonella choleraesuis vaccine. The protective immunity induced was compared with that of unvaccinated pigs by intranasal challenge with a field strain of S choleraesuis. Of 18 unvaccinated pigs, three died as a result of challenge from S choleraesuis and 10 of the survivors developed chronic lung lesions. None of the vaccinated pigs died as a result of challenge and two only showed macroscopic evidence of salmonellosis on autopsy three weeks after challenge. It was concluded that subcutaneous vaccination of pigs prevented death and clinical illness but did not prevent invasion of tissues following intranasal challenge with S choleraesuis.  相似文献   

14.
The RH strain of Toxoplasma gondii is highly virulent; 1 infective organism is uniformly lethal for mice. Three pigs inoculated SC with 10(3) tachyzoites of the RH strain developed fever, but otherwise remained normal, and T gondii was not demonstrated in their tissues by bioassay into mice. To determine whether vaccination with the RH strain could induce protective immunity to oral challenge with T gondii oocysts, 12 pigs were divided into 3 groups (A, B, C) of 4 pigs each. Pigs in groups A and B were inoculated IM with 10(6) tachyzoites of the RH strain and 4 pigs in group C served as uninoculated controls. Except for fever, the pigs remained clinically normal after inoculation with the RH strain and T gondii was not found by bioassay in mice of tissues from 4 pigs euthanatized 64 days after inoculation. Pigs in groups B and C were challenge-inoculated orally with 10(4) (4 pigs) or 10(5) (4 pigs) T gondii oocysts 72 days after vaccination with the RH strain. The previously uninoculated pigs developed fever, anorexia, and diarrhea from 3 to 8 days after the oocyst challenge. One of the 2 pigs given 10(5) oocysts became moribund because of toxoplasmosis and was euthanatized 9 days after inoculation. Pigs vaccinated with the RH strain remained free of clinical signs after challenge with oocysts. Results of the bioassays indicated that fewer tissue cysts developed in the RH strain-vaccinated pigs than in the previously uninoculated control pigs.  相似文献   

15.
The immunogenic and protective potentials of an outer membrane-enriched fraction (OM) from a serotype 5 strain of Actinobacillus (Haemophilus) pleuropneumoniae (APP) and the same OM degraded with proteinase K or periodate were evaluated in swine. Groups of pigs were vaccinated with two doses of OM, proteinase K-treated OM (P-OM), periodate-treated OM (PI-OM), or placebo vaccine and challenged intranasally with the homologous strain of APP. Results from triplicate experiments indicated that proteinase K treatment of OM resulted in an improved efficacy. This improved efficacy of P-OM vaccine over untreated OM vaccine was evidenced not only by less severe lung lesions in P-OM vaccinated pigs but also by significant reduction (P less than 0.05) in the number of P-OM vaccinated pigs which developed lung lesions upon challenge with APP. Assessment of sera from vaccinated animals by immunoblotting, complement fixation test, or ELISA indicated that the immunogenicity of some but not all protein or carbohydrate components were reduced (or eliminated) by proteinase K and periodate treatments respectively.  相似文献   

16.
The level of antigen-specific interferon-gamma (IFN-gamma) production can be used as an indicator of cellular immunity. In this study, we investigated the role of cellular immune response in protection against classical swine fever virus (CSFV). Pigs were vaccinated once with CSFV vaccine and challenged 6 days post-vaccination (dpv). Vaccinated animals had significantly higher CSFV-specific IFN-gamma secreting cells than the unvaccinated pigs (p<0.05) at the time of challenge and were protected against CSFV infection, whereas the control pigs died within 14 days post-infection (dpi). In the second experiment, pigs were vaccinated once with either CSFV vaccine or CSFV vaccine combined with Aujeszky's disease (AD) vaccine and challenged at 140 dpv. All vaccinated pigs developed both CSFV-specific, cellular and antibody responses and were protected against CSFV infection. However, differences in cellular, but not antibody, responses were observed in the two vaccinated groups. The group vaccinated with CSFV vaccine developed a significantly higher number of CSFV-specific, IFN-gamma secreting cells (p<0.05), exhibited a shorter fever period and less pathological changes, when compared with the group vaccinated with the combined vaccine. The kinetics of IFN-gamma production, following challenge in the two vaccinated groups, were also different. Taken together, our results indicated that CSFV-specific, IFN-gamma production could be detected early after antigen exposure and correlated with protection against CSFV challenge. Our findings highlight the role of cellular immune responses in porcine anti-viral immunity.  相似文献   

17.
The protective effect of an alpha-toxoid vaccine of Clostridium septicum purified alpha-toxin was investigated in guinea pigs. Purified alpha-toxin was treated with formalin to make toxoid, and alpha-toxoid vaccine was prepared by mixing alpha-toxoid (4 to 64 microg/dose) with an aluminum phosphate gel as adjuvant. Guinea pigs were immunized twice with different doses of alpha-toxoid vaccine, and challenged with spores of C. septicum. The guinea pigs surviving after challenge had been immunized with 8 microg/dose or more of alpha-toxoid. All these animals produced titers of 20 units or higher of antitoxin at the challenge. The results suggest that C. septicum alpha-toxin plays an important role in protection against challenge with spores in guinea pigs.  相似文献   

18.
A monoclonal antibody, 3BIgG, against the prokaryotically expressed foot-and-mouth disease virus (FMDV) non-structural protein (NSP) 3B was obtained. The 3BIgG-sepharose conjugant (3BmAb-6BFF) was prepared by adding the purified 3BIgG into epoxy-activated sepharose 6BFF, incubating with the inactivated FMDV, and then removing the sepharose by centrifugation. The vaccine was made from the supernatant emulsified with oil-adjuvant ISA206. Ten guinea pigs, 26 pigs and six cattle were vaccinated, and a vaccination control group was included without treatment with 3BmAb-6BFF. After 28 days, 9/10 pigs challenged with FMDV were protected, this result was the same as the control group, indicating that the vaccine potency was not reduced after treatment with 3BmAb-6BFF. The other animals were vaccinated weekly for nine weeks, and serum samples were collected to detect 3ABC-antibody titers. The results showed that 3ABC-antibody production was delayed and the positive antibody rates were lower when vaccination was carried out using vaccines treated with 3BmAb-6BFF compared with untreated vaccines. The findings of this study suggest that it is possible to reduce NSPs using a mAb-sepharose conjugant in FMD vaccines without reducing their efficacy.  相似文献   

19.
The purpose of the study was to evaluate the short- and long-term immunity after intranasal vaccination in pigs with maternally derived antibodies (MDA). In two experiments, 10-week-old pigs with moderate MDA titres against Aujeszky's disease virus (ADV) were vaccinated intranasally with the Bartha strain of ADV to evaluate the protective immunity conferred at 2 weeks, 2 months and 4 months after vaccination. Protection was evaluated on the basis of severity of clinical signs, periods of fever and growth arrest, and duration and amount of virus excreted after challenge with a virulent ADV. During the first 2-3 weeks after vaccination, antibodies to ADV continued to decline as in unvaccinated control pigs. After that, antibody titres stabilized or gradually increased. At 2 weeks, 2 months and 4 months after vaccination, vaccinated pigs were significantly better protected than unvaccinated controls. The vaccinated pigs challenged 2 weeks after vaccination hardly developed any sign of disease. Mild signs of Aujeszky's disease and a growth arrest period of 5 days were observed in vaccinated pigs challenged 2 months after vaccination, whereas vaccinated pigs challenged 4 months after vaccination developed severe signs of disease and a growth arrest period of 13 days. Vaccinated pigs challenged 2 weeks after vaccination did not excrete challenge virus, and pigs challenged 2 or 4 months after vaccination excreted far less virus than unvaccinated controls. The results demonstrate that intranasal ADV vaccination of pigs with moderate MDA titres protected them from 2 weeks to at least 4 months after vaccination. Immunity steadily declined, however, after vaccination.  相似文献   

20.
ABSTRACT: Infection of cattle with foot-and-mouth disease virus (FMDV) results in the development of long-term protective antibody responses. In contrast, inactivated antigen vaccines fail to induce long-term protective immunity. Differences between susceptible species have also been observed during infection with FMDV, with cattle often developing persistent infections whilst pigs develop more severe symptoms and excrete higher levels of virus. This study examined the early immune response to FMDV in na?ve cattle after in-contact challenge. Cattle exposed to FMDV were found to be viraemic and produced neutralising antibody, consistent with previous reports. In contrast to previous studies in pigs these cattle did not develop leucopenia, and the proliferative responses of peripheral blood mononuclear cells to either mitogen or third party antigen were not suppressed. Low levels of type 1 interferon and IL-10 were detected in the circulation. Taken together, these results suggest that there was no generalised immunosuppression during the acute phase of FMDV infection in cattle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号