首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of oxygen plasma treatment on both surface properties of poly(p‐phenylene benzobisoxazole) (PBO) fibers and interfacial properties of PBO fiber reinforced poly(phthalazinone ether sulfone ketone) (PPESK) composite were investigated. Surface chemical composition, surface roughness, and surface morphologies of PBO fibers were analyzed by X‐ray photoelectron spectroscopy (XPS), Atomic force microscopy (AFM), and scanning electron microscopy (SEM), respectively. Surface free energy of the fibers was characterized by dynamic contact angle analysis (DCAA). The interlaminar shear strength (ILSS) and water absorption of PBO fiber‐reinforced PPESK composite were measured. Fracture mechanisms of the composite were examined by SEM. The results indicated that oxygen plasma treatment significantly improved the interfacial adhesion of PBO fiber‐reinforced PPESK composite by introducing some polar or oxygen‐containing groups to PBO fiber surfaces and by fiber surface roughening. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

2.
A water-soluble sulfonated poly (ether ether ketone) (SPEEK) sizing agent is prepared and applied to improve the interfacial adhesion of carbon fiber/poly (ether ether ketone) (CF/PEEK) composites. The surface morphology, surface roughness, surface chemistries, and surface free energy of SPEEK sized CF are obtained to understand the sizing effect. The results reveal the increased surface free energy and surface roughness of SPEEK sized CF. In addition, a chemical reaction between the CF surface and sizing layer is proved based on the results of XPS, IR, and 1H NMR. The interfacial structure of CF/PEEK composites is further ascertained by AFM and the appearance of gradient interface could be verified for SPEEK sized CF/PEEK composites. The formation of the gradient interface is due to the chemical reaction between the CF and sizing agent as well as the improved compatibility between the sized CF and matrix, which benefits the improvement of interfacial adhesion.  相似文献   

3.
To investigate the influence of atmospheric plasma treatment on aramid fiber wetting and adhesion behavior, an air dielectric barrier discharge (DBD) was applied to the Armos aramid fiber surface at different discharge power densities. Dynamic contact angle analysis indicated that the total surface free energy was increased from 49.6 to 68.3 mJ/m 2 , an increment of 37.7%, whereas the single-fiber tensile strength testing showed that the mechanical properties of the Armos fibers were almost unaffected. With the enhancement of fiber surface wettability, the interlaminar shear strength, which was used to determine the interfacial adhesion in Armos-fiber-reinforced thermoplastic poly(phthalazinone ether sulfone ketone) composites, increased by 17.2% to 71.4 MPa. Scanning electron microscopy photos showed that the predominant failure mode of the composites changed from interface failure to matrix and/or fiber failure after the plasma treatment. Taken together, these results suggest that the air DBD plasma was an effective technique for improving the surface and interfacial performance of the Armos fibers without damaging their bulk properties. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

4.
Surface modification of poly(aryl ether ether ketone) (PEEK) film surfaces by oxygen plasma treatment was investigated. Two procedures, the direct plasma treatment and the remote oxygen plasma treatment, were used as oxygen plasma treatments, and the efficiency of the hydrophilic modification was discussed. The direct and remote oxygen plasma treatments lead to degradation of the PEEK film as well as hydrophilic surface modification. The degradation disturbs the surface modification. The remote oxygen plasma treatment rather than the direct oxygen plasma is suitable for the hydrophilic surface modification of the PEEK film. The remote oxygen plasma treatment at 10 W for 60 s forms predominantly C—O groups rather than C=O groups as an oxygen-containing group on the PEEK surface and gives a highly hydrophilic surface with a contact angle of 44 degrees. © 1998 John Wiley & Sons, Inc. J Appl Polm Sci 68:271–279, 1998  相似文献   

5.
In this article, aramid fibers III were surface modified using an ammonia‐plasma treatment to improve the adhesive performance and surface wettability. The surface properties of fibers before and after plasma treatment were investigated by X‐ray photoelectron spectroscopy, scanning electron microscopy, atomic force microscopy, and water contact angle measurements. The interfacial shear strength of each aramid fibers III‐reinforced epoxy composites was studied by micro‐debonding test. The ammonia‐plasma treatment caused the significant chemical changes of aramid fibers III, introducing nitrogen‐containing polar functional groups, such as ? C? N? and ? CONH? , and improving their surface roughness, which contributed to the improvement of adhesive performance and surface wettability. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40250.  相似文献   

6.
We studied thermoplastic poly(phthalazinone ether ketone) (PPEK) resin as a sizing agent on carbon fiber, with emphasis on its thermal stability, surface energy, wetting performance, and interfacial shear strength (IFSS). X‐ray photoelectron spectroscopy characterization was carried out to study the chemical structure of sized/unsized carbon fibers. Scanning electron microscopy and atomic force microscopy were used to characterize surface topography. TGA was used to analyze the thermal stability. Meanwhile, contact angle measurement was applied to analyze the compatibility between the carbon fibers and PPEK and the surface energy of carbon fibers. IFSS of carbon fiber/PPEK composite was examined by microbond testing. It is found that carbon fibers uniformly coated with PPEK resin had better thermal stability and compatibility with PPEK resin than the uncoated fiber. The contact angle is 57.01° for sized fibers, corresponding to a surface energy of 49.96 mJ m?2, much smaller than that for unsized ones with contact angle value of 97.05°. The value of IFSS for sized fibers is 51.49 MPa, which is higher than the unsized fibers. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

7.
Interfacial adhesion between fiber and matrix has a strong influence on composite mechanical performance. To exploit the reinforcement potential of the fibers in advance composite, it is necessary to reach a deeper understanding on the relation between fiber surface treatment and interfacial adhesion. In this study, air plasma was applied to modify carbon fiber (CF) surface, and the capability of plasma grafting for improving the interfacial adhesion in CF/thermoplastic composite was discussed and also the mechanism for composite interfacial adhesion was analyzed. Results indicated that air plasma treatment was capable of increasing surface roughness as well as introducing surface polar groups onto CF; both chemical bonding and mechanical interaction were efficient in enhancements of interlaminate shear strength of CF/PPESK composite, while mechanical interaction has a dominant effect on composite interfacial adhesion than chemical bonding interaction. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

8.
Poly(phthalazinone ether sulfone ketone) (PPESK) asymmetric hollow fiber membranes for gas separation were prepared by dry/wet phase inversion technique. The effects of various preparation conditions such as solvent, nonsolvent-additives(NSA), PPESK concentration, and air gap on the membrane performance were studied. The heat resistance of the PPESK hollow fiber membrane was also examined. The hollow fiber membrane prepared from solvent with stronger solubility showed low gas permeation and high O2/N2 selectivity due to the denser skin layer. Hollow fiber membrane made from PPESK/DMAc/EtOH/THF system had thicker skin layer than that made from PPESK/DMAc/GBL system with the same ratio of near-to-cloud-point of NSA, which resulted in the higher O2/N2 selectivity. Along with the increase of NSA content, the gas permeation increased and the O2/N2 selectivity decreased. The O2/N2 selectivity of hollow fiber membranes made from PPESK/DMAc/GBL and PPESK/DMAc/EtOH/THF systems were 4.9 and 4.8 respectively, when the membrane forming systems contained appropriate content of NSA. The high polymer concentration resulted in low gas permeation and high O2/N2 selectivity. When the air gap was excessively long, the membrane performance dropped because of the damage to the dense skin layer. There was no significant drop on the membrane performance when the operation temperature was elevated to 90°C. The average O2/N2 selectivity was higher than 3.0 at 70°C during a long period of 55 days' test time. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

9.
A series of poly(phthalazinone ether sulfone ketone) (PPESK) copolymers containing different component ratios of bis(4‐fluorodiphenyl) ketone and bis(4‐chlorodiphenyl)sulfone with respect to a certain amount of 4‐(4‐hydroxyphenyl)‐2,3‐phthalazin‐1‐one were synthesized by polycondensation. Glass transition temperatures of these polymers were adjusted from 263°C to 305°C by changing the ratios of reactants. Gas permeability and selectivity of the dense membranes of the polymers for three kinds of gases (CO2, O2, and N2) were determined at different temperatures. The result indicated that the membrane of PPESK (S/K = 1/1, mol ratio) had an excellent gas separation property. Permeability of the polymer membranes for CO2, O2, and N2 was P = 4.121 barrier, P = 0.674 barrier, and P = 0.0891 barrier, respectively. Separation factors of α and α were 7.6 and 46, respectively. New material was made into a composite membrane with silicone rubber for blocking up leaks and defects on the surface of its nonsymmetrical membrane. As a result of the test, permeability of the composite membrane was J = 7.2 × 10−6 cm3 (STP) cm−2 S−1 cm−1 Hg and J = 0.99 × 10−6 cm3 (STP) cm−2 S−1 cm−1 Hg, whereas the α was still higher than 7. These showed that PPESKs had a bright prospect as the potential membrane material for high‐temperature gas separation. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 2385–2390, 1999  相似文献   

10.
Poly(p‐phenylene benzobisoxazole) (PBO) fibers were activated by the horseradish peroxidases (HRP) and then treated by 3‐Glycidoxypropyltrimethoxysilane (KH‐560) to improve the wettability and the interfacial adhesion between PBO fibers and cyanate ester matrix. The chemical compositions of PBO fibers were characterized and analyzed by FTIR and XPS. Surface morphologies of PBO fibers were examined by SEM. The wettability of PBO fibers was evaluated by the dynamic contact angle analysis test. The mechanical properties were evaluated by tensile strength and interfacial shear strength, respectively. The results demonstrated that hydroxyl groups and epoxy groups were introduced onto the surface of PBO fibers during the treatments. These treatments can effectively improve the wettability and adhesion of PBO fibers. The surface free energy of PBO fibers was increased from 31.1 mN/m to 55.2 mN/m, and the interfacial adhesion between PBO fiber and cyanate ester resin was improved to 10.77 MPa. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40204.  相似文献   

11.
Bing Zhang  Shouhai Zhang  Xigao Jian 《Carbon》2006,44(13):2764-2769
Carbon membranes were prepared from a novel polymeric precursor of poly(phthalazinone ether sulfone ketone) (PPESK), of which the changes of microstructure and chemical compositions during pyrolysis from 500 °C to 950 °C were monitored by thermal gravimetric analysis, X-ray diffraction, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. It has been found that the weight loss of the PPESK precursor up to 800 °C is about 43.0 wt%. After the heat treatment, the typical chemical structure of the PPESK precursor disappears, at the same time a graphite-like structure with more aromatic rings is formed. The interlayer spacing (i.e., d value) decreases from 0.471 nm to 0.365 nm as the pyrolysis temperature increases. The gas permeation performance of carbon membranes has been tested using pure single gases including H2, CO2, O2 and N2. For the carbon membrane obtained by carbonizing the PPESK precursor at 800 °C, the maximum ideal permselectivities for H2/N2, CO2/N2 and O2/N2 gas pairs could reach 278.5, 213.8 and 27.5, respectively.  相似文献   

12.
Cross-linkable poly(phthalazinone ether ketone sulfone) bearing tetrafluorostyrene groups (PPEKS-FSt) has been prepared by copolycondensation reaction for optical waveguide applications. The resulting amorphous polymer exhibits good solubility in some common polar organic solvents (e.g., N,N′-dimethylacetamide, N-methyl-2-pyrrolidinone, chloroform) at room temperature, and can be easily spin-coated into thin films with good optical quality. The glass transition temperature (Tg) and the temperature of 1% weight loss (1% Td) are 261 °C and 494 °C, respectively, which could be further increased by 31 °C and 14 °C upon thermal cross-linking. The cross-linked polymer thin films exhibit high refractive index (∼1.65, TE mode), high thermo-optic coefficient value (dn/dT) (−1.455 × 10−4/°C, TE mode), low optical loss (less than 0.24 dB/cm at 1310 nm) and relatively low birefringence (∼0.007).  相似文献   

13.
The segmental dynamics of functional graphene (fGR)/poly(ether sulfone ether ketone ketone) (PESEKK) nanocomposites were investigated via differential scanning calorimetry and dynamic mechanical analysis (DMA) measurements. First, fGR was prepared using graphene oxide and sodium dodecylbenzene sulfonate. Subsequently, a series of fGR/PESEKK nanocomposites were prepared through solution blend. When the sulfone groups were introduced into the segments of PESEKK polymers, the glass transition temperature (Tg) of PESEKK was higher than that of free sulfone functionalized poly(ether ketone ketone). The fGR/PESEKK nanocomposites displayed a uniform nanostructure because of the strong interfacial interaction between fGR and PESEKK. With the increase in the fGR contents, the Tg values of fGR/PESEKK nanocomposites decreased. Two loss factor peaks were noted in the fGR/PESEKK nanocomposites, which were characterized via DMA. The α′‐relaxation of the nanocomposites at low temperature was assigned to polymer chains close to the polymer/filler interface with mobility higher than that in the bulk unfilled PESEKK (α‐relaxation). © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44391.  相似文献   

14.
We studied the influence of the gelation conditions on the formation kinetics of the polyphthalazine ether sulfone ketone (PPESK) membrane via wet phase inversion process experimentally and theoretically. Membrane formation and its morphology were first observed with an online optical microscope - CCD camera system. The resulting membranes prepared under various gelation conditions were then characterized by the gelation parameter, optical microscope, and SEM. Lastly, the relationship between the final membrane structure/permeation properties and the gelation parameter was discussed extensively. The results showed that both the gelation rate and the membrane flux increased dramatically as the gelation temperature increased. Moreover, the membrane structures became loose, and the porosity of membrane increased. Different non-solvent could change the solubility parameter between the polymer and the non-solvent, and thus the gelation rate greatly. With the increasing number of carbons in non-solvent, the gelation rate became slow, and the membrane gradually changed from a finger structure into a sponge structure. Adding NMP into the non-solvent changed the difference in the chemical potential and the solubility parameter between the polymer solution and the non-solvent, which in turn changed the gelation rate of polymer solution greatly. With the increasing concentration of NMP in non-solvent, the gelation rate became very slow and sponge structures formed with the non-solvent system of 80% NMP. A novel conclusion could be made that we could control the flux and reject of membrane just by changing the mean diffusion coefficient of skin, D, and the diffusion coefficient of skin, D1, in the process of membrane formation. This work was presented at 13 th YABEC symposium held at Seoul, Korea, October 20–22, 2007.  相似文献   

15.
The cloud points of PPESK/NMP/H2O ternary system at different temperatures were measured by titrimetric method. The binodal lines in the ternary phase diagram of the poly(phthalazinone ether sulfone ketone (PPESK) dope system was determined, on the basis of the cloud point experimental data being linearly fitted with the semiempirical linear cloud point correlation. Furthermore, phase separation behavior during the phase inversion of PPESK membrane‐forming system was discussed in terms of the phase diagram. Then, dry–wet spinning technique was employed in manufacturing PPESK hollow fiber membranes by immersion precipitation method. The cross‐section morphologies of hollow fibers were observed by scanning electronic microscopy. Also, the effects of dope solution composition and spinning parameters, including the coagulant composition and the spinning temperature on the separation performances of fibers, were evaluated by permeability measurements. The thermotolerance of the PPESK hollow fiber membranes prepared in the work was examined for the permeation operation at different temperatures and pressure differences. The experimental results showed that pure water flux increases several fold along with the temperature increases from 20 to 80°C at different operation pressures, while the solute rejection only decreases slightly. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 878–884, 2006  相似文献   

16.
Modification of poly(phthalazinone ether sulfone ketone) (PPESK) by sulfonation with concentrated or fuming sulfuric acid as sulfonation agents was carried out to prepare membrane materials with increased hydrophilicity and potentially increased fouling resistance. Sulfonated PPESK (SPPESK) copolymers, with a degree of sulfonation ranging from 10–300%, were prepared and characterized. Factors affecting the sulfonation reaction were studied, and reaction conditions for the preparation of SPPESK with different degrees of sulfonation were determined. Compared with the properties of PPESK, the hydrophilicity of SPPESK was increased, as shown by a reduced contact angle with water. The glass transition temperature was increased from 278°C (PPESK) to a maximum of 323°C for the highly sulfonated derivative, due to the strong polarity of  SO3H and hydrogen bonding. Ultrafiltration membranes prepared with PPESK and SPPESK were compared. For a SPPESK asymmetric membrane, the PEG12000 rejection was 98% and the water flux was 876 kg · m−2 · h−1. SPPESK/PPESK composite nanofiltration membranes were also prepared and were shown to have short‐term operational stability up to 120°C. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 1685–1692, 2001  相似文献   

17.
Soluble, thermally stable phthalazinone poly(aryl ether sulfone ketone)s (PPESKs) containing a carboxyl group in its side chain have been synthesized by the nucleophilic displacement reaction of 4‐(4‐hydroxylphenyl)‐1(2H)‐phthalazinone with bis(4‐chlorophenyl) sulfone, 4,4′‐difluoro‐benzophenone, and phenolphthalin. The polymerization reactions were conducted in sulfolane in the presence of K2CO3 to give high molecular weight polymers, which are soluble in solvent such as nitrobenzene and pyridine at room temperature and easily cast into flexible, yellow, and transparent film. The polymers are amorphous with high glass transition temperature. The decomposition temperature of the polymers are >400°C, which indicates high thermal stability. The crosslinking reaction of PPESK can occur by using dicyandiamide (Dicy) as curing agent. The apparent energy (ΔE) is 52.2 kJ/mol and reaction order (n) is close to 1.0. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1111–1114, 2003  相似文献   

18.
Composite carbon membranes were prepared from poly(phthalazinone ether sulfone ketone) (PPESK) by incorporating with polyvinylpyrrolidone (PVP) or zeolite (ZSM-5) through stabilization and pyrolysis processes. The thermal stability of composite polymeric membranes was measured by thermal gravimetric analysis. The resultant composite carbon membranes were characterized by scanning electron microscopy, X-ray diffraction and gas permeation technique, respectively. The results illustrated that the thermal stability of composite polymeric membranes was enhanced by addition of ZSM-5 or reduced by PVP. For ZSM-5 or PVP composite carbon membranes prepared at 650 °C, the O2 permeability is 199.70 Barrer or 124.89 Barrer, and the O2/N2 selectivity is 10.3 or 4.2, respectively. Compared with carbon membranes from pure PPESK, the O2 permeability of ZSM-5 or PVP composite carbon membranes increases by 18.5 or 11.6 times, together with the O2/N2 selectivity decreasing by 35.2% or 73.6%, respectively. The gas separation mechanism of composite carbon membranes is molecular sieving. Adsorption effect also plays a significant role for CO2 permeating through ZSM-5 composite carbon membranes.  相似文献   

19.
Poly(ether sulfone) and poly(ether sulfone ketone) copolymers (I–V) were synthesized by the nucleophilic substitution reaction of 4,4′-dihydroxy diphenyl sulfone (DHDPS, A) with various mole proportions 4,4′-difluoro benzophenone (DFBP, B) and 4,4′-difluoro diphenyl sulfone (DFDPS, C) using sulfolane as solvent in the presence of anhydrous K2CO3. The polymers were characterized by physicochemical and spectroscopic techniques. All polymers were found to be amorphous, and the glass transition temperature (Tg) was found to increase with the sulfonyl content of the polymers. 13C-nuclear magnetic resonance (NMR) spectral data was interpreted in terms of the compositional triads, BAB, BAC, CAC, ABA, and ABB, and indicate that transetherification occurs at high concentration of DFBP units in the polymer (IV). The good agreement between the observed and calculated feed ratios validates the triad analysis. Thermal decomposition studies reveal that the thermal stability of the polymers increases with increase in the carbonyl content in the polymer. Activation energies for thermal decomposition were found to be in the range of 160–203 kJ mol−1 with the cleavage of ϕ SO2 bond being the preponderant mode of decomposition and depended on the block length of the sulfonyl unit. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 2113–2121, 1999  相似文献   

20.
A series of blends have been prepared by adding a novel thermoplastic poly(phthalazinone ether sulfone ketone) (PPESK) in varying proportions to diglycidyl ether of bisphenol A epoxy resin (DGEBA) cured with p‐diaminodiphenylsulfone (DDS). All the blends showed two‐phase structures characterized by differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). Addition of the PPESK resulted in great enhancement of glass transition temperatures (Tg) both in the epoxy‐rich phase and in the PPESK‐rich phase by reason of the special structure of PPESK. There was moderate increase in the fracture toughness as estimated by impact strength. Fracture mechanisms such as crack deflection and branches, ductile microcracks, ductile tearing of the thermoplastic, and local plastic deformation of the matrix were responsible for the increase in the fracture toughness of the blends. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号