首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of blends have been prepared by adding a novel thermoplastic poly(phthalazinone ether sulfone ketone) (PPESK) in varying proportions to diglycidyl ether of bisphenol A epoxy resin (DGEBA) cured with p‐diaminodiphenylsulfone (DDS). All the blends showed two‐phase structures characterized by differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). Addition of the PPESK resulted in great enhancement of glass transition temperatures (Tg) both in the epoxy‐rich phase and in the PPESK‐rich phase by reason of the special structure of PPESK. There was moderate increase in the fracture toughness as estimated by impact strength. Fracture mechanisms such as crack deflection and branches, ductile microcracks, ductile tearing of the thermoplastic, and local plastic deformation of the matrix were responsible for the increase in the fracture toughness of the blends. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

2.
Phenolphthalein poly(ether ether ketone) (PEK‐C) was found to be miscible with uncured tetraglycidyl 4,4′‐diaminodiphenylmethane (TGDDM), which is a type of tetrafunctional epoxy resin (ER), as shown by the existence of a single glass transition temperature (Tg) within the whole composition range. The miscibility between PEK‐C and TGDDM is considered to be due mainly to entropy contribution. Furthermore, blends of PEK‐C and TGDDM cured with 4,4′‐diaminodiphenylmethane (DDM) were studied using dynamic mechanical analysis (DMA), Fourier‐transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM). DMA studies show that the DDM‐cured TGDDM/PEK‐C blends have only one Tg. SEM observation also confirmed that the blends were homogeneous. FTIR studies showed that the curing reaction is incomplete due to the high viscosity of PEK‐C. As the PEK‐C content increased, the tensile properties of the blends decreased slightly and the fracture toughness factor also showed a slight decreasing tendency, presumably due to the reduced crosslink density of the epoxy network. SEM observation of the fracture surfaces of fracture toughness test specimens showed the brittle nature of the fracture for the pure ER and its blends with PEK‐C. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 598–607, 2001  相似文献   

3.
This article describe the influence of phenolphthalein poly (ether ketone) (PEK‐C) on the cure behaviors and thermal properties of the diglycidyl ether of bisphenol A (DGEBA) epoxy resin with cyanate ester as curing agent. The curing kinetics and reaction pathways were monitored using dynamic differential scanning calorimeter and Fourier transform infrared spectroscopy. The dependence of activation energy on the conversion degree for all the studied systems was calculated in the light of Ozawa‐Flynn‐Wall method. Furthermore, the thermomechanical properties and the thermal stability of the cured resins were also evaluated by dynamic mechanical analysis and thermogravimetric analysis, respectively. Conclusions can be drawn as follows: the main reaction pathways did not vary with the inclusion of PEK‐C, but the reaction rate of the blend was found to be higher than that of the neat epoxy. The glass transition temperature of the blend was not changed by the addition of PEK‐C, while the initial decomposition temperature slightly decreased with increase in PEK‐C content. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

4.
用热塑性酚酞型聚芳醚酮树脂(PEK-C)与环氧树脂(EP)熔融共混,并以4,4′-二氨基二苯甲烷(DDM)为固化剂制备新型改性环氧树脂。用SEM观察固化物的微观相结构,用DMA、TG-DTG测试固化物的热性能及2相的相容性。结果表明,PEK-C质量分数小于10%时可以分子或纳米尺度(<100nm)均匀分散于环氧树脂基体中;PEK-C的含量增大,相分离现象明显,固化物的Tg升高,但在300℃以上的高温热稳定性能下降。  相似文献   

5.
综述了双马来酰亚胺及聚醚酮类树脂改性环氧树脂的研究及应用情况。  相似文献   

6.
含氟聚醚醚酮增韧环氧树脂相形貌与性能研究   总被引:3,自引:0,他引:3  
采用SEM观察了热塑性含氟结构聚醚醚酮(6FPEEK)共混增韧环氧树脂的浇铸体脆断断口相形貌,测试了浇铸体的力学性能及动态机械性能,通过统计和数学分析建立了冲击韧性(αk)、热塑颗粒粒径(d)和粒间距(D)间的半定量关系。结果表明,该体系可得到连续相为环氧树脂而分散相为热塑颗粒的相结构,热塑相颗粒尺寸较为统一,且随热塑性树脂含量的增加而增大;6FPEEK含量增加对拉伸强度的影响不大,环氧树脂和热塑性塑料的结合界面差导致了冲击韧性在6FPEEK质量分数达到9.09%时出现峰值而后下降;该增韧体系的增韧机理可能为刚性粒子增韧。  相似文献   

7.
Stress relaxation and dynamic mechanical behavior of phenolphthalein poly(ether ketone) (PEK-C) have been investigated. Using Ferry's reduction method, the master curve was obtained. From the experimental results, we found that the WLF equation is not appropriate in the lower-temperature range (T < Tg). The relaxation spectrum was calculated according to the first approximation method proposed by Schwarzl and Staverman. In addition to the α-transition region, a second transition zone is revealed at low temperature. This transition is probably due to a restricted motion of its main chain. © 1995 John Wiley & Sons, Inc.  相似文献   

8.
A semicrystalline polymer, isotactic poly(phenyl glycidyl ether) (i‐PPGE) was used as a modifier for epoxy resin; 1,8‐Diamino‐p‐methane (MNDA) and 4,4′‐Diamino diphenyl sulfone (DDS) were used as curing agents. In the MNDA‐cured resins, the dispersed phase were spherical particles with diameters in the range of 0.5–1.0 μm when the resin was blended with 5 phr i‐PPGE. In the DDS‐cured resins, the particle size distribution of the dispersed phase was much wider. The difference was traced back to the reactivity of the curing agent and the different regimes used for curing. Through dynamic mechanical analysis, it was found that in the MNDA‐cured systems, i‐PPGE had a lower crystallinity than in the DDS‐cured system. In spite of the remarkable difference in the morphology and microstructure of the modified resins cured with these two curing agents, the toughening effects of i‐PPGE were similar for these resins. The critical stress intensity factor (KIC) was increased by 54% and 53%, respectively, for the resins cured by DDS and by MNDA, blending with 5 phr of the toughner. i‐PPGE was comparable with the classical toughners carboxyl‐terminated butadiene‐acrylonitrile copolymers in effectiveness of toughening the epoxy resin. An advantage of i‐PPGE was that the modulus and the glass‐transition temperature of the resin were less affected. However, this modifier caused the flexural strength to decrease somewhat. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1223–1232, 2002; DOI 10.1002/app.10445  相似文献   

9.
Blends of phenolphthalein poly(ether ether ketone) (PEK-C) and a thermotropic liquid crystalline copolyester (LCP), poly[(1-phenylethyl-p-phenylene terephthalate)-co-(1-cumyl-p-phenylene terephthalate)], was prepared via melt mixing. The studies of differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) indicate that the PEK-C/LCP blends display two glass transition temperatures which correspond to those of PEK-C- and LCP-rich phases, respectively. The PEK-C/LCP blends were judged to be partially miscible. Scanning electron microscopy (SEM) was employed to examine the morphology of the blends, and it was observed that all the PEK-C/LCP blends displayed a phase-separated structure. The interface between the PEK-C- and LCP-rich phases is poor. The Young's modulus of the PEK-C/LCP blends was found to increase with LCP content due to the high modulus of the LCP. However, the tensile strength and the elongation at break of the blends greatly decreases with increase of LCP content, owing to the poor interfacial adhesion. From the thermogravity analysis (TGA), it was observed that all the blends exhibited a two-step weight loss mechanism, and the thermal degradation onset temperature of the blends was lowered with the addition of LCP content. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 1923–1931, 1998  相似文献   

10.
Poly(aryl ether ketone)s were used as modifiers for bisphenol-A diglycidyl ether epoxy resin (AER 331) cured with methyl hexahydrophthalic anhydride. Poly(phthaloyl diphenyl ether) (PPDE), soluble in the uncured epoxy resin without using solvents, was prepared by the Friedel-Crafts reaction of phthaloyl chloride and diphenyl ether. The mechanical, thermal, and dynamic viscoelastic properties of the modified resins with PPDE were examined and compared to the parent resin (AER 331). The fracture toughness, KIC, for the modified resins increased at no expense to their mechanical and thermal properties on 10 wt % addition of PPDE with molecular weights of more than 17,000. The toughening mechanism is discussed based on the morphological and dynamic viscoelastic behaviors of the modified epoxy resin system.  相似文献   

11.
The poly(sily ether) with pendant chloromethyl groups (PSE) was synthesized by the polyaddition of dichloromethylsilane (DCM) and diglycidylether of bisphenol A (DGEBA) with tetrabutylammonium chloride (TBAC) as a catalyst. This polymer was miscible with diglycidyl ether of bisphenol A (DGEBA), the precursor of epoxy resin. The miscibility is considered to be due mainly to entropy contribution because the molecular weight of DGEBA is quite low. The blends of epoxy resin with PSE were prepared through in situ curing reaction of diglycidyl ether of bisphenol A (DGEBA) and 4,4′‐diaminodiphenylmethane (DDM) in the presence of PSE. The DDM‐cured epoxy resin/PSE blends with PSE content up to 40 wt % were obtained. The reaction started from the initial homogeneous ternary mixture of DGEBA/DDM/PSE. With curing proceeding, phase separation induced by polymerization occurred. PSE was immiscible with the 4,4′‐diaminodiphenylmethane‐cured epoxy resin (ER) because the blends exhibited two separate glass transition temperatures (Tgs) as revealed by the means of differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). SEM showed that all the ER/PSE blends are heterogeneous. Depending on blend composition, the blends can display PSE‐ or epoxy‐dispersed morphologies, respectively. The mechanical test showed that the DDM‐cured ER/PSE blend containing 25 wt % PSE displayed a substantial improvement in Izod impact strength, i.e., epoxy resin was significantly toughened. The improvement in impact toughness corresponded to the formation of PSE‐dispersed phase structure. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 505–512, 2003  相似文献   

12.
The cure kinetics and morphology of diglycidyl ether of bisphenol-A (DGEBA) epoxy resin modified with a poly (ether ether ketone) based on tertiary butyl hydroquinone (PEEK-T) cured with diamino diphenyl sulphone (DDS) were investigated using differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and dynamic mechanical thermal analysis (DMTA). The results obtained from DSC were applied to autocatalytic and diffusion controlled kinetic models. The reaction mechanism broadly showed autocatalytic behaviour regardless of the presence of PEEK-T. At higher PEEK-T concentration, more diffusion controlled mechanism was observed. The rate of curing reaction decreased with increase in thermoplastic content and also with the lowering of curing temperature. The activation energies of the blends are higher than that of the neat resin. The blends showed a phase separated morphology. The dispersed phase showed a homogeneous particle size distribution. The Tg of the neat resin decreased with the decrease in cure temperature. Two Tg's corresponding to the epoxy rich and thermoplastic rich phases were observed in the dynamic mechanical spectrum. The storage modulus of 10 and 20 phr PEEK-T blends are found to be greater than the neat resin.  相似文献   

13.
Development of alternate materials to Nafion, based on ionically conducting polymers and their blends is important for the wider applications of proton exchange membrane fuel cells. In this work, blends of sulfonated poly(ether ether ketone) (SPEEK) with poly(ether sulfone) (PES) are investigated. SPEEK with various ion exchange capacity (IEC) was prepared and blended with PES, which is nonionic and hydrophobic in nature. A comparative study of the water uptake, proton conductivity, and thermo‐mechanical characteristics of SPEEK and the blend membranes as a function of the IEC is presented. Addition of PES decreases the water uptake and conductivity of SPEEK. Chemical and thermal stability and mechanical properties of the membrane improve with the addition of PES. The effect of water content on the thermo‐mechanical properties of membranes was also studied. The morphology of blend membranes was studied using SEM to understand the microstructure and miscibility of the components. On the basis of the results, a plausible microstructure of the blends is presented, and is shown to be useful in understanding the variation of different properties with blending. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

14.
Rheological properties of the blends of poly(aryl ether ether ketone) (PEEK) with liquid crystalline poly(aryl ether ketone) containing substituted 3‐trifluoromethylbenzene side group (F‐PAEK), prepared by solution precipitation, have been investigated by rheometer. Dynamic rheological behaviors of the blends under the oscillatory shear mode are strongly dependent on blend composition. For PEEK‐rich blends, the systems show flow curves similar to those of the pure PEEK, i.e., dynamic storage modulus G′ is larger than dynamic loss modulus G″, showing the feature of elastic fluid. For F‐PAEK‐rich systems, the rheological behavior of the blends has a resemblance to pure F‐PAEK, i.e., G″ is greater than G′, showing the characteristic of viscous fluid. When the PEEK content is in the range of 50–70%, the blends exhibit an unusual rheological behavior, which is the result of phase inversion between the two components. Moreover, as a whole, the complex viscosity values of the blends are between those of two pure polymers and decrease with increasing F‐PAEK content. However, at 50% weight fraction of PEEK, the viscosity‐composition curves exhibit a local maximum, which may be mainly attributed to the phase separation of two components at such a composition. The changes of G′ and G″ with composition show a trend similar to that of complex viscosity. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4040–4044, 2006  相似文献   

15.
Hydroxyl terminated poly(ether ether ketone) oligomer with pendant methyl group (PEEKMOH) was prepared. Ternary nanocomposites were processed by blending PEEKMOH oligomer with diglycidyl ether of bisphenol‐A (DGEBA) epoxy resin along with organically modified montmorillonite (Cloisite 25A) followed by curing with 4,4'‐diamino diphenyl sulfone. Tensile moduli and flexural moduli were increased, while the tensile strength and Izod impact strength were decreased with increase in clay content. Similarly, storage moduli and loss moduli were increased and glass transition temperature was decreased as the percentage of clay increased. X‐ray diffractograms showed exfoliated morphology even with higher concentration of clay content (8 phr). Scanning electron microscopy of fractured surfaces and tensile failed specimens revealed slow crack propagation and increase in river markings with nanoclay incorporation confirming the improvement in toughness. The domain size of PEEKMOH was decreased with the incorporation of nanoclay into the epoxy matrix, indicating the restriction of growth mechanism by nucleation during phase separation. With increase in clay content, phase separation disappeared indicating gelation occurs before phase separation. Fracture toughness was increased with the addition of PEEKMOH and clay in epoxy resin. Coefficient of thermal expansion of nanocomposites decreases up to 3 phr clay concentrations thereafter it increases. A marginal increase in thermal stability was observed with increase in clay content. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

16.
Mechanical properties such as the tensile modulus, yield (break) strength, and elongation to break (or yield) are measured for multiphase poly(ether ether ketone) (PEEK)/poly(aryl ether sulfone) (PES) blends. Specimens with three different levels of thermal histories (quenched, as‐molded, and annealed) are prepared in order to study their effects on the mechanical properties of PEEK/PES blends. Synergistic behavior is observed in the tensile modulus and tensile strength of the blends in almost the whole range of compositions. The ductility of quenched blends measured as the elongation to break (yield) shows an unexpected synergistic behavior in the blend containing 90 wt % PEEK, although a negative deviation from additive behavior is observed in the rest of the compositions. A ductile–brittle transition is observed between 50 and 75 wt % PEEK in the blend. The ductile–brittle transition in as‐molded blends shifts to 75–90 wt % PEEK. Annealed blends show predominantly brittle behavior in the whole composition range. The experimental data are further correlated with the theoretically predicted results based on various composite models. Although the prediction based on these equations fails to fit the experimental data in the whole composition range, the simplex equations that are normally used for blends showing synergistic behavior produced a reasonable fit to the experimental data. The mechanical properties obtained for different blend compositions are further correlated with their morphology as observed by scanning electron microscopy. Morphological observation shows a two‐phase morphology in PES‐rich blends, which is an interlocked morphology in which the disperse phase is not clearly visible in PEEK‐rich blends, and a cocontinuous type of morphology for a 50/50 composition. Considerable permanent deformation of both the disperse and matrix phase, especially in the case of quenched tensile specimens, demonstrates the remarkable adhesion present between the two phases. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2887–2905, 2003  相似文献   

17.
The epoxy/polystyrene system is characterized by a poor adhesion between the constituent phases, which determines its mechanical properties. The adhesion can be improved via blends based on epoxy resin and random copolymers, poly(styrene‐co‐allylalcohol) (PS‐co‐PA). In this work, the influence of PS‐co‐PA content and the good adhesion between the phases on the tensile properties and the fracture toughness achieved through instrumented Charpy tests have been investigated. The tensile strength and the deformation at break showed an increase in the PS‐co‐PA content while the Young's modulus remained the same. The tensile fracture surfaces revealed that the improvement of these magnitudes was mainly due to a crack deflection mechanism. Also, the fracture toughness of the blends was superior to that of the pure epoxy resin. The main operating toughening mechanism was crack deflection. The fractographic analysis showed that ~ 80% of the particles were broken, and the crack tended to divert from its original path through the broken PS‐co‐PA particles. The remaining particles were detached from the epoxy resin, and the holes left suffered plastic deformation. Analytical models were used to predict successfully the toughness due to these mechanisms. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

18.
19.
Toughened mixtures containing 15 wt % polyethersulfone were made with diglycicdyl ether of bisphenol-A resin and 4,4′-diaminodiphenylmethane curing agent, with amine/epoxy group stoichiometric ratios varying from 0.6 to 1.5. Fracture behavior of the modified mixtures has been investigated as a function of the stoichiometry in the matrix. Morphology has been analyzed by transmission and scanning electron microscopy. The increase of amine content in the matrix results in a further increased fracture toughness. This behavior has been related to the changes on the ductility of the matrix upon stoichiometric ratio, but also to the changes on microstructural features of the modified mixtures as stoichiometric amine/epoxy group ratio increased. These morphological changes have been interpreted in terms of spinodal decomposition during curing of the epoxy matrix. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 183–191, 1998  相似文献   

20.
The effects of heat treatment on the properties of membranes prepared from blends of poly(ether sulfone)/sulfonated poly(phenylene sulfide) (SPPS) and phenolphthalein poly(ether ether ketone)/SPPS were studied in detail. The membranes' fundamental properties, including water content, transport number, diffusion coefficient of electrolytes, flux, and so on, changed with both treated temperature and time, whereas the ion‐exchange capacity and electrical resistance remained approximately unchanged. The trends may have been due to the possible structural change resulted from the shrinking of the polymers forming the membranes. Furthermore, the membranes also retained a good physical appearance at temperatures below 220°C. Therefore, a series of heterogeneous membranes with desired conductivities and selectivities as well as proper water contents, which could satisfy different industrial purposes, such as electrodialysis, diffusional dialysis, and proton exchange, were achieved by simple heat treatment for a proper time and at a proper temperature. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 494–499, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号