首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dynamic viscoelastic properties of binary blends consisting of an isotactic polypropylene (i‐PP) and ethylene‐1‐octene copolymer (PEE) were investigated to reveal the relation between miscibility in the molten state and the morphology in the solid state. In this study, PEE with 24 wt % of 1‐octene was employed. The PEE/PP blend with high PEE contents showed two separate glass‐relaxation processes associated with those of the pure components. These findings indicate that the blend presents a two‐phase morphology in the solid state as well as in the molten state. The PEE/PP blend with low PEE content showed a single glass‐relaxation process, indicating that PEE molecules were probably incorporated in the amorphous region of i‐PP in the solid state. The DMTA analysis showed that the blends with low PEE contents presented only one dispersion peak, indicating a certain degree of miscibility between the components of these blends. These results are in accordance with the results of the rheological analysis. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 1634–1639, 2001  相似文献   

2.
Thermoplastic vulcanizates (TPVs) are prepared by the dynamic vulcanization process, where crosslinking of an elastomer takes place during its melt mixing with a thermoplastic polymer under high shear. TPVs based on polypropylene (PP) with different grades of ethylene‐octene copolymers (EOC) were prepared with a coagent assisted peroxide crosslinking system. The effect of dynamic vulcanization and influence of various types and concentrations of peroxide were mainly studied on the basis of the mechanical, thermal, and morphological characteristics. Three structurally different peroxides, namely dicumyl peroxide (DCP), tert‐butyl cumyl peroxide (TBCP), and di‐tert‐butyl peroxy isopropyl benzene (DTBPIB) were investigated. The mechanical properties of the TPVs are primarily determined by the extent of crosslinking in the EOC and the degree of degradation in the PP phase. Among all peroxides used DCP gives best overall properties with low‐molecular‐weight EOC, whereas TBCP shows best property level with high‐molecular‐weight EOC‐based TPVs. These can be explained on the basis of the molecular characteristics of EOC and the nature of the peroxide used. Differential scanning calorimetery (DSC) and morphological analysis reveal that PP and EOC are a thermodynamically immiscible system. The melting endotherm was studied to determine the influence of various peroxides on crystallinity of the PP phase. Tensile fracture patterns were also analyzed to study the failure mechanism of the samples. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

3.
In the present work, statistical (EOCs) and block (OBCs) ethylene‐octene copolymers, with similar densities and crystallinities, were used as impact modifiers of isotactic polypropylene (iPP), and the toughening effects of these two types of elastomers were compared. The viscosity curves of EOCs were similar to those of OBCs with equivalent melt flow rate (MFR), enabling a comparison of the viscosity ratio and elastomer type as independent variables. No distinct differences on the crystal forms and crystal perfection of iPP matrix in various blends were observed by thermal analysis. Morphological examination showed that OBCs form smaller dispersed domains than EOCs with similar MFRs. The flexural modulus, yield stress, stress and strain at break showed the same variation tendency for all the investigated polypropylene/elastomer blends. However, the room temperature Izod impact toughness of iPP/OBC blend was higher than that of iPP/EOC blend containing elastomer with the similar MFRs. The experimental results indicated that the compatibility of iPP/OBCs was much higher than that of iPP/EOCs. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

4.
In this article, blends of polypropylene random copolymer (PP‐R) with a novel impact modifier, namely ethylene/styrene interpolymer (ESI), were prepared to evaluate the effectiveness of ESI in toughening PP‐R and the influence of ESI content on the mechanical, thermal, and rheological properties of polymer blends. Results showed that super‐toughened PP‐R/ESI blends (ca. Izod impact strength ≥ 500 J/m) were readily achieved with only 5 wt % ESI. The blends exhibited significant improvement in both impact strength and elongation, while small loss in tensile strength and elastic modulus when increasing ESI content. ESI had a nucleating effect that caused PP matrix to crystallize at higher temperatures, whereas PP‐R/ESI blends presented lower melting temperatures (Tm) than PP‐R matrix and Tm decreased with the increment of ESI content. Rheology study indicated that both PP‐R matrix and PP‐R/ESI blends presented shear thinning behaviors during melt processing. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

5.
Rheological and morphological studies were performed on polymer blends of ethylene‐octene copolymer [polyethylene elastomer (PEE)] and polypropylene (PP). The viscosities of PEE, PP, and PEE/PP blends were analyzed using an Instron capillary rheometer and a Rheometrics Dynamic Stress Rheometer, SR 200. A non‐Newtonian flow behavior was observed in all samples in the shear rate range from 27 to 2700 s−1, whereas at shear rates in the range from 0.01 to 0.04 s−1, a Newtonian flow behavior was verified. The scanning electron micrographs showed that dual‐phase continuity may occur between 50 and 60 (wt %) of PEE. This result is consistent with the Sperling's model. The mechanical analysis showed that PEE/PP, with 5 wt % of PEE, presented an increase on the mechanical properties and as the PEE content increased, a negative deviation in relation to an empirical equation was observed. Thermal analysis showed that there were no change in the crystallization behavior of the matrix when different elastomer contents were added. Dynamic mechanical thermal analysis showed that samples with low PEE contents presented only one peak, indicating a certain degree of miscibility between the components of these blends. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 692–704, 2000  相似文献   

6.
Blends of poly(ethylene terephthalate) (PET) and poly(ethylene octene) (POE) were prepared by melt blending with various amounts of trimethylolpropane triacylate (TMPTA). The mechanical properties, phase morphologies, and gel fractions at various absorbed doses of γ‐irradiation have been investigated. It was found that the toughness of blends was enhanced effectively after irradiation as well as the tensile properties. The elongation at break for all studied PET/POE blends (POE being up to 15 wt %) with 2 wt % TMPTA reached 250–400% at most absorbed doses of γ‐irradiation, approximately 50–80 times of those of untreated PET/POE blends. The impact strength of PET/POE (85/15 wt/wt) blends with 2 wt % TMPTA irradiated with as little as 30 kGy absorbed dose exceeded 17 kJ/m2, being approximately 3.4 times of those of untreated blends. The improvement of the mechanical properties was supported by the morphology changes. Scanning electron microscope images of fracture surfaces showed a smaller dispersed phase and more indistinct inter‐phase boundaries in the irradiated blends. This indicates increased compatibility of PET and POE in the PET/POE blends. The changes of the morphologies and the enhancement of the mechanical properties were ascribed to the enhanced inter‐phase boundaries by the formation of complex graft structures confirmed by the results of the gelation extraction and Fourier Transform Infrared analyses. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

7.
Polyhydroxyalkanoates are a type of polymers with a clear renewable origin, as different types of microorganisms can produce them. Unfortunately, their mechanical properties are not usually as good as those of conventional polymers and for a moment their price is relatively higher; these are two of the reasons why it is suggested in the bibliography that they can be employed forming part of blends with conventional polymers. In the present work, blends of a poly(hydroxybutyrate‐valerate) (PHBV) copolymer and a polypropylene resin have been successfully processed using PHBV concentrations up to 20 phr with internal mixer and a hot plate press. Processability and applicability of such blends logically depend on their properties, and for this reason morphology, rheological, thermal properties, and tensile strength for all samples have been evaluated. Ternary blends, incorporating a poly(styrene‐ethylene‐butylene) copolymer have also been obtained and the influence of the blends properties has been analyzed. Results have shown that the rheological behavior and crystallization process of the system is markedly dependent on the blend composition. Although tensile strength significantly decreases with PHBV concentration, the use of low concentrations of the styrene‐ethylene‐butylene‐styrene copolymer could improve the elongation at break to a certain extent. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

8.
Process parameters of poly (ethylene‐co‐vinyl acetate) (EVA)‐modified poly (ethylene‐co‐1‐octene) (POE)‐interpenetrating, double network blend was designed through Taguchi L9 orthogonal array as a novel approach for complete optimization of engineering and solvent‐swelling properties. Influence of different factors like EVA and peroxide concentrations, blending temperature, and blending time on gel content, tensile modulus, tensile strength, ultimate elongation were statistically calculated. Results showed good correlation between mathematical and physical inferences. Stress relaxation, hysteresis and other physico‐mechanicals like total elongation, solvent‐swelling, etc., were interestingly depended upon the nature of dominantly crosslinked phase instead of net crosslinking of the network hybrids. Sorption, on the other hand, depended on the hydrophobic‐hydrophilic property of the surfaces. The series of data produced finally helped to select the best process parameters under which a particular POE‐EVA blend composition yielded most balanced physico‐mechanicals. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

9.
One polypropylene (PP) was mixed with two ethylene butene copolymers (EBM). EBM1 had 12.5 mol % of butene and was immiscible with the PP. EBM2 had 51.6 mol % of butene and was miscible with the PP. The dispersed PP in EBM1 showed fractionalized crystallization behavior with a crystallization temperature at around 45°C and a much slower isothermal crystallization rate comparing to the neat PP. The PP did not exhibit fractionalized crystallization behavior in EBM2. EBM1 did not decrease both the crystallization and melting temperatures of the continuous PP. However, EBM2 could decrease both the two temperatures. It was found that EBM2 could largely suppress the epitaxial lamellar branching of the PP. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

10.
Interaction of the components and physical properties of the polypropylene (PP)/cycloolefin copolymer (COC) blends were studied by means of differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA), Vicat softening temperature (VST), and measurements of the coefficient of linear thermal expansion (CLTE) and of the density. The attention was focused on the blends with 90–60% of PP by wt, where the COC minority component was present in the form of short fibers. DSC, DMTA, and density measurements concurrently prove the immiscibility of PP and COC. DSC measurements reveal that crystallinity and melting temperature of the PP component slightly decrease with the fraction of COC in blends, in the range of 56–47% and 164–161°C, respectively. Storage modulus and loss modulus of the blends are in a good accord with the model predictions based on (i) the equivalent box model (EBM) and on (ii) modified equations of the percolation theory. The dependence of the VST on the blend composition is in a good correlation with the previous morphological analysis. Measurements of the coefficient of thermal expansion provide useful data as the functions of temperature and blend composition. Density of the blends was found to obey the volume additivity. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   

11.
The melting, nonisothermal crystallization behavior and morphology of blends of polypropylene (PP) with random ethylene–propylene copolymer (PP‐R) were studied by differential scanning calorimetry, polarized optical microscopy, scanning electron microscopy, and X‐ray diffraction. The results showed that PP and PP‐R were very miscible and cocrystallizable. Modified Avrami analysis was used to analyze the nonisothermal crystallization kinetics of the blends. The values of the Avrami exponent indicated that the crystallization nucleation of the blends was heterogeneous, the growth of the spherulites was tridimensional, and the crystallization mechanism of PP was not affected by PP‐R. The crystallization activation energy was estimated using the Kissinger method. An interesting result was obtained with the modified Avrami analysis and the Kissinger method, whose conclusions were in good agreement. The addition of a minor PP‐R phase favored an increase in the overall crystallization rate of PP. Maximum enhancing effect wass found to occur with a PP‐R content of 20 wt %. The relationship between the composition and the morphology of the blends is discussed. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 670–678, 2006  相似文献   

12.
Blends of poly(3‐hydroxy butyrate‐co‐3‐hydroxy valerate) (PHBV) and poly(ethylene oxide) (PEO) were prepared by casting from chloroform solutions. Crystallization kinetics and melting behavior of blends have been studied by differential scanning calorimetry and optical polarizing microscopy. Experimental results reveal that the constituents are miscible in the amorphous state. They form separated crystal structures in the solid state. Crystallization behavior of the blends was studied under isothermal and nonisothermal conditions. Owing to the large difference in melting temperatures, the constituents crystallize consecutively in blends; however, the process is affected by the respective second component. PHBV crystallizes from the amorphous mixture of the constituents, at temperatures where the PEO remains in the molten state. PEO, on the other hand, is surrounded during its crystallization process by crystalline PHBV regions. The degree of crystallinity in the blends stays constant for PHBV and decreases slightly for PEO, with ascending PHBV content. The rate of crystallization of PHBV decreases in blends as compared to the neat polymer. The opposite behavior is observed for PEO. Nonisothermal crystallization is discussed in terms of a quasi‐isothermal approach. Qualitatively, the results show the same tendencies as under isothermal conditions. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2776–2783, 2006  相似文献   

13.
The development of structure and viscoelastic properties during silane crosslink reaction in metallocene ethylene–octene copolymer has been investigated. Using attenuated and transmission infrared spectroscopy, the concentrations of certain functional groups and change in sample thickness were monitored, giving the information on the progress of crosslink reaction. The evolution of crosslink content and viscoelastic properties was analyzed using a parallel‐plate rheometer. The results showed that crosslinking process started with the hydrolyzation of methoxy groups in the near‐surface layer, proceeding in a diffusion manner. At this stage no silanol groups could be detected, revealing that the condensation occurred promptly after hydrolyzation. The internal crosslink could not begin until there are sufficient water molecules in the surrounding. A water by‐product from the condensation reaction played an essential part in the center region. The rheological data showed a reduction in magnitude of creep compliance. As the reaction proceeded, more networks took place within an existing gel. The materials, then, acted more like elastic and exhibited an improvement in ability for recovery process. The immobilization of chain segments, due to the presence of tight network, disallowed conformations necessary for crosslink reaction and a certain amount of hydrolyzable groups and silanol groups remained after a long crosslinking process. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

14.
Rubber‐toughened polypropylene (PP)/org‐Montmorillonite (org‐MMT) nanocomposite with polyethylene octene (POE) copolymer were compounded in a twin‐screw extruder at 230°C and injection‐molded. The POE used had 25 wt % 1‐octene content and the weight fraction of POE in the blend was varied in the range of 0–20 wt %. X‐ray diffraction analysis (XRD) revealed that an intercalation org‐MMT silicate layer structure was formed in rubber‐toughened polypropylene nanocomposites (RTPPNC). Izod impact measurements indicated that the addition of POE led to a significant improvement in the impact strength of the RTPPNC, from 6.2 kJ/m2 in untoughened PP nanocomposites to 17.8 kJ/m2 in RTPPNC containing 20 wt % POE. This shows that the POE elastomer was very effective in converting brittle PP nanocomposites into tough nanocomposites. However, the Young's modulus, tensile strength, flexural modulus, and flexural strength of the blends decreased with respect to the PP nanocomposites, as the weight fraction of POE was increased to 20 wt %. Scanning electron microscopy (SEM) was used for the investigation of the phase morphology and rubber particles size. SEM study revealed a two‐phase morphology where POE, as droplets was dispersed finely and uniformly in the PP matrix. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99: 3441–3450, 2006  相似文献   

15.
Solvothermal process was successfully developed to graft dibutylmaleate (DBM) onto poly(ethylene‐co‐1‐octene) (POE) with dicumyl peroxide (DCP) as free radical‐initiator. FTIR spectra demonstrate that DBM is successfully grafted onto the backbone of POE by this novel method. The influences of DBM content, DCP concentration, POE concentration, reaction temperature and reaction time on the grafting copolymerization have been investigated in detail through grafting degree (GD). It is worthy to indicate that high grafting degree (above 15%) can be achieved through the one‐pot way when the graft reaction is carried out in 40 mL toluene at 150°C for 5 h with 1.6 g DBM, 6–8 g POE and 0.35 g DCP. This developed solvothermal process is becoming an effective way to prepare POE‐g‐DBM graft copolymers, and can be extended to other systems. In addition, TGA results show that the thermal properties of POE are enhanced after the grafting reaction. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

16.
Shear viscosity and melt fracture of a metallocene poly(ethylene‐octene) were studied using a capillary rheometer and dies with different lengths. The true wall shear stresses determined at zero die length showed a dip at high shear rates. The shear viscosity was derived from the true wall shear stress. With increasing shear rates, the extrudate staged from smooth to three types of melt fracture with regular patterns, and then turned into irregular shapes. Three types of regular melt fractures—sharkskin, helix, and spiral (in sequence)—were observed with an increase of the shear rates. The wavelength of the regular melt fracture was measured from extrudates, and the corresponding frequency was calculated. The frequency increased at elevated melt temperatures. Both shear viscosity and frequency at different temperatures correlated well by using the time–temperature Williams–Landel–Ferry (WLF) superposition. Additionally, it was found that the frequency decreased slightly for a longer die but it increased when the shear rate went up. Three frequency functions were associated with three melt fracture patterns, respectively. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 903–911, 2005  相似文献   

17.
A two-stage stable system of isotactic polypropylene–poly(ethylene oxide) blend, in which poly(ethylene oxide) can be permanent either in molten or in crystallized states in the temperature range from 280 to 327 K, was described. The behavior of that blend was explained in terms of fractionated crystallization. A fine dispersion of poly(ethylene oxide) inclusions is required for efficient suppression of crystallization initiated by heterogeneous nuclei. The application of a thin film of polypropylene-poly(ethylene oxide) 9 : 1 blend obtained by quenching for multiuse erasable and rewritable carriers for visible information has been demonstrated. The same sample exhibits different dynamic mechanical properties when poly(ethylene oxide) inclusions are molten or crystallized. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66: 2047–2057, 1997  相似文献   

18.
Blend systems of polystyrene‐block‐poly(ethylene‐co‐(ethylene‐propylene))‐block‐polystyrene (SEEPS) triblock copolymer with three types of hydrocarbon oil of different molecular weight were prepared. The E″ curves as a function of temperature exhibited two peaks; one peak at low temperature (? ?50°C), arising from the glass transition of the poly[ethylene‐co‐(ethylene‐propylene)] (PEEP) phase and a high temperature peak (? 100°C), arising from the glass transition of the polystyrene (PS) phase. The glass transition temperature (Tg) of the PEEP phase shifted to lower temperature with increasing oil content. The shifted Tg depended on the types of oil and was lower for the low molecular weight oil. The Tg of PS phase of the present blend system, were found to be constant and independent of the oil content, when molecular weight of the oil is high. However, for the lower molecular weight oil, the Tg of the PS phase also shifted to lower temperatures. This fact indicates that the oil of high molecular weight is merely dissolved in the PS phase. The E′ at (75°C, at which temperature both of PEEP and PS phases are in glassy state, was found to be independent of oil content. In contrast, at 25°C, at which temperature the PEEP phase is in rubbery state, the E′ decreased sharply with increasing oil content. This result indicates that the hydrocarbon oil was a selective solvent in the PEEP phase. It mainly dissolved in the PEEP phase, although slightly dissolved into the PS phase as well, when molecular weight of oil is low. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

19.
Ethylene‐octene copolymer (EOC) was crosslinked by dicumyl peroxide (DCP) at various temperatures (150–200°C). Six concentrations of DCP in range 0.2–0.7 wt % were investigated. cross‐linking was studied by rubber process analyzer (RPA) and by differential scanning calorimetry (DSC). From RPA data analysis real part modulus s', tan δ, and reaction rate were investigated as a function of peroxide content and temperature. The highest s'max and the lowest tan δ were found for 0.7% of DCP at 150°C. Chain scission was analyzed by slope analysis of conversion ratio, X in times after reaching the maximum. Less susceptible to chain scission are temperatures in range 150–170°C and peroxide levels 0.2–0.5%. Heat of reaction was analyzed by DSC at various heating rates (5–40°C min−1). It was found to be exothermic. By projection to zero heating rate, the reaction was found to start at 128°C with the maximum at 168°C. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

20.
The compatibilizing effect of the triblock copolymer poly(styrene-b-butadiene-b-styrene) (SBS) on the morphology and mechanical properties of immiscible polypropylene/polystyrene (PP/PS) blends were studied. Blends with three different weight ratios of PP and PS were prepared and three different concentrations of SBS were used for investigations of its compatibilizing effects. Scanning electron microscopy (SEM) showed that SBS reduced the diameter of the PS-dispersed particles as well as improved the adhesion between the matrix and the dispersed phase. Transmission electron microscopy (TEM) revealed that in the PP matrix dispersed particles were complex “honeycomblike” aggregates of PS particles enveloped and joined together with the SBS compatibilizer. Wide-angle X-ray diffraction (WAXD) analysis showed that the degree of crystallinity of PP/PS/SBS slightly exceeded the values given by the addition rule. At the same time, addition of SBS to pure PP and to PP/PS blends changed the orientation parameters A110 and C significantly, indicating an obvious SBS influence on the crystallization process in the PP matrix. SBS interactions with PP and PS influenced the mechanical properties of the compatibilized PP/PS/SBS blends. Addition of SBS decreased the yield stress and the Young's modulus and improved the elongation at yield as well as the notched impact strength in comparison to the binary PP/PS blends. Some theoretical models for the determination of the Young's modulus of binary PP/PS blends were used for comparison with the experimental results. The experimental line was closest to the series model line. © 1998 John Wiley & Sons, Inc. J. Appl. Polym. Sci. 69: 2625–2639, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号