首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Nylon‐66 is a typical semicrystalline polymer that can be crosslinked using crosslinking agents and electron beam irradiation. Hybrid nylon‐66‐based membranes are more porous but denser compared to the pure nylon‐66 membrane. Besides that, hybrid nylon‐66 membranes exhibit higher water uptake and severe swelling in water. Si/nylon‐66 membranes were prepared by adding γ‐aminopropyltriethoxylsilane (APTEOS). Crosslinked silica in nylon‐66 membranes is confirmed with high gel content and Fourier transform infrared peaks, but XRD results showed that there is a low crystalline degree in these membranes. The thermal stability of hybrid nylon‐66 membranes is also less affected by APTEOS. The crosslinking agent only improves storage modulus in hybrid nylon‐66 membranes. After irradiation, it is learned that APTEOS improves separation performance of nylon‐66 membranes. However, excessive APTEOS causes the ratio of effective thickness over porosity (Δx/Ak) reduces significantly resulting a lower permeability membrane. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

2.
Ultrafine carboxylated styrene–butadiene rubber(CSBR) powders were prepared by using gamma irradiation and following spray‐drying method. The influences of dose rate, absorbed dose, and sensitizer content on the crosslinking density of CSBR latices were studied in detail. Then the ultrafine CSBR powders were used to toughen nylon 6. The toughness and thermal properties of nylon 6/CSBR blends were measured by using notched lzod impact test and differential scanning calorimetry and thermogravimetry, respectively. Results showed that the crosslinking density of CSBR increased with increasing of dose and sensitizer content, and it is independent on dose rate. The notched Izod impact strength of nylon 6 under room temperature increased after incorporation of irradiation crosslinked CSBR powders with appropriate crosslinking density. The morphology of higher impact nylon 6/CSBR blends indicated that the finer dispersion existed with dispersed particles of 150‐nm diameter. Fracture morphology of nylon 6/CSBR blend suggested that the shear yielding in matrix is the primary toughening mechanism for nylon 6/CSBR blends. The crystallinity of nylon 6/CSBR blends decreased slightly compared with pure nylon 6, whereas the addition of CSBR powders had little influence on the thermal stability of nylon 6. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 3040–3046, 2002  相似文献   

3.
A trifunctional organo alkoxysilane (3‐aminopropyl)triethoxysilane (γ‐APS) has been used as reagent for the chemical modification of montmorillonite clay. Silane grafting was taken place in dry and hydrolyzing conditions. Silane grafted and pristine clay took part in interfacial polycondensation process to deposit a layer of nylon‐66 onto the clay lamellae and therefore, enhance their affinity with nylon‐66 matrix. Evidence of presence of grafted silane molecules and deposition of nylon‐66 on clay particles were provided by Fourier transform‐infrared, thermogravimetric analysis (TGA), and X‐ray diffraction (XRD). Such modified clays and pristine clays were melt compounded with nylon‐66. The structures of the resulting nylon composites were characterized using XRD and transmission electron microscopy and the results showed presence of both intercalation and exfoliation. TGA thermograms of nanocomposites indicated improved thermal stability upon the incorporation of silane grafted montmorillonite. Furthermore, differential scanning calorimetry scans showed that silane modified clays promoted crystallization in nanocomposites. Increase of storage modulus and depression of tan δ peak in nanocomposites in dynamical mechanical thermal analysis were observed. The rheological properties of nylon‐66 and nanocomposites were also evaluated and differences in values of complex viscosity of samples were noticed. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

4.
The effects of electron‐beam irradiation on morphology, mechanical properties and on the heat and hot oil resistance of the thermoplastic elastomeric blend of 30:70 and 70:30, nylon 6 and hydrogenated nitrile rubber (HNBR) were investigated over the dose range 0–8 Mrad. The insoluble content of blends increased with increase in the radiation dose. The morphology of the blend was studied in scanning electron microscopy, with special reference to the effect of radiation prior to processing via injection molding. Irradiated pellets showed better mechanical properties after injection molding compared with irradiated sheets at low radiation dose. The observed differences in mechanical properties are explained on the basis of morphology of the blend. The blend properties were also found to have a strong dependence on nylon content. It was found that the blends rich in nylon had superior mechanical properties, hot oil and solvent resistance, whereas blends with higher HNBR content had better set and heat resistance. The effect of radiation on interaction in these blends was also evaluated and was found to induce possible inter‐chain crosslinking in the blends. Copyright © 2006 Society of Chemical Industry  相似文献   

5.
应用γ射线辐射交联技术,制备出以乙烯-醋酸乙烯/茂金属聚烯烃弹性体/纳米级改性氢氧化铝(EVA/POE/ ATH)为基材的舰船用无卤阻燃电缆护套料,探讨了共混物配比、ATH的种类与用量以及辐射剂量对材料力学性能和阻燃性能的影响。结果表明,随着POE用量的增加,材料的拉伸强度和断裂伸长率增加,耐热老化性能提高,但硬度降低;纳米ATH的加入使材料具有较好的阻燃性能;材料的辐射交联工艺可弥补阻燃剂对材料力学性能的影响,在辐射剂量为80 kGy的条件下,采用EVA /POE/ATH =90/10/60(质量份数,下同)的共混体系可制备出综合性能优异的护套料。  相似文献   

6.
通过辐照法将马来酸酐(MAH)基团接枝到聚苯醚(PPE)上,制备了PPE-g-MAH,将其和聚酰胺(PA)66通过熔融共混挤出方法制备了PPE-g-MAH/PA66共混物。采用差示扫描量热、吸水性实验、维卡软化和热变形实验、拉伸和冲击性能测试及动态力学性能测试等对PPE-g-MAH/PA66共混物性能进行了研究。结果表明,与PPE/PA66共混物相比,PPE-g-MAH/PA66共混物的耐热性能、力学性能和吸水性能均得到改善;随PPE-g-MAH含量的增加,PPE-g-MAH/PA66共混物中PA66的熔融温度和玻璃化转变温度均向PPE方向移动,表明两者的相容性有所提升,且共混物的维卡软化温度、热变形温度、25℃之前的储能模量均升高,吸水率降低;当PPE-g-MAH含量较低时,共混物拉伸强度提升明显而冲击强度升幅较小,当PPE-g-MAH含量较高时,共混物冲击强度提升明显而拉伸强度基本不变。因此,可以根据实际的应用要求选择合适的PPE-g-MAH含量。  相似文献   

7.
相邑钧  王晓红 《广州化工》2010,38(1):116-118
通过己内酰胺及累托石在甲醇钠作催化剂和甲苯二异氰酸酯助催化剂的存在下,原位聚合改性制备尼龙6复合材料,研究了累托石的加入对尼龙6的力学性能、热性能的影响。结果表明,改性后的尼龙6复合材料的弯曲强度、冲击强度等力学性能得以提高,通过改性还使制品的热稳定性和尺寸稳定性明显提高而吸水率大幅度降低。  相似文献   

8.
综述了尼龙46纤维的制造、性能及工业应用情况。通过对尼龙46及尼龙6,尼龙66的性能进行比较发现,由于尼龙46熔点比尼龙66、尼龙6分别高出28℃和67℃,结晶度也高很多,因而尼龙46纤维的高温热机械性能大为改善,在许多工业应用领域可以得到发展。  相似文献   

9.
Monomer cast nylon was incorporated with different contents of kaolin, which is grafted with poly (ethylene glycol diglycidyl ether) via in-situ polymerization. The influence of treated-kaolin and kaolin contents on composites properties was studied. Treated-kaolin has a better effect on the properties of nylon than kaolin. Thermogravimetric analysis and Differential scanning calorimetry analysis show that that the feeding of kaolin improved thermal stability and crystallinity of nylon. The results indicate that using treated-kaolin as reinforcement, the composites displayed remarkable mechanical properties, the tensile strength and notched impact strength are 83.6 MPa and 4.46 MPa, respectively. The water absorption capacity of composites was greatly reduced by 50% with the feeding of kaolin.  相似文献   

10.
Copolyamides of nylon 6,6 with bis(2-carboxyethyl)methylphosphine oxide (CEMPO) were prepared by melt polycondensation of nylon 6,6 salt with CEMPO and hexamethylene diamine. The effect of CEMPO upon melting point, moisture regain, boiling water shrinkage, water wicking, tensile properties, thermal stability, static dissipation, and flammability of nylon 6,6 fibers and fabrics was determined. The fiber properties were greatly affected by the high water absorption and solubility characteristics of the phosphine oxide linkage. However, crystallinity and orientation were not greatly disturbed by up to 30–40M% CEMPO substitution in nylon 6,6. The copolyamides were of improved flame resistance compared to nylon 6,6 and were also found to give improved flame resistance in blends of the copolymer with various commercial plastics. In addition, CEMPO and the corresponding diamine, bis(3-aminopropyl)methylphosphine oxide were used to prepare a series of cycloaliphatic and aromatic ring-containing polyamides, but problems were encountered with moisture sensitivity and low melting points with some of these polymers.  相似文献   

11.
Poly(urethane-siloxane) networks based on hydroxyethoxy propyl terminated poly(dimethylsiloxane) (PDMS) as the soft segment and 4,4′-methylenediphenyl diisocyanate (MDI) and two hyperbranched polyesters with different core as the hard segments were characterized by swelling experiments, thermal analyses (DSC and TG), thermomechanical analysis (DMTA), X-ray scattering studies, SEM and AFM analyses, water contact angle and water absorption measurements, as well as surface free energy determination. From these studies, structure–property relationships were elucidated. Hyperbranched polyesters based on 2,2-bis(hydroxymethyl)propionic acid and ethoxylated pentaerythritol or di-trimethylolpropane as core (BH-40 and HBP-4) were used as crosslinkers for the samples of different series. Both series are composed of samples having different PDMS (i.e., soft segment) content. The crosslinking density and extent of hydrogen bonding showed an influence on the polyurethane (PU) properties. It was found that higher crosslinking density and better thermal stability of PUs based on BH-40 compared to HBP-4 based PUs are due to the less dense structure of BH-40. DMTA experiments revealed that the networks exhibit two glass transition temperatures, of the soft and hard segments, and one secondary relaxation process. The crosslinking density and extent of the microphase separation increased and thermomechanical properties were improved with decreasing content of PDMS. With increasing PDMS content, the surface of the polyurethane networks became more hydrophobic, the surface free energy decreased and thermal stability was improved. The obtained results revealed that synthesized PUs have good thermal and thermomechanical properties, which can be tailored for the potential use in the coating technology by changing the type of hyperbranched polyester or PDMS content.  相似文献   

12.
The effect of dicumyl peroxide (DCP) content on the gel fraction, mechanical, dynamic mechanical, and thermal properties of linear low‐density polyethylene (LLDPE)/ethylene‐co‐methyl acrylate (EMA) blends were studied. Gel content of the blends increases with increasing DCP content, and EMA is more prone to crosslinking than LLDPE. Wide‐angle X‐ray diffraction (WAXD) and differential scanning calorimetry (DSC) were used to study the effect of DCP crosslinking on percent crystallinity and crystalline structure of the blends and individual components. At lower level of DCP loading, crosslinking process does not have significant effect on the crystalline structure of the LLDPE, which was confirmed from the percent crystallinity and lattice distance value. However, at higher DCP content, percent crystallinity decreases significantly. At lower EMA concentration (<50%), percent crystallinity and lattice distance remain unchanged up to 2 wt % of DCP. For EMA contents of more than 50 wt %, increasing DCP content reduces the crystallinity of the blends and increases the lattice distance. The highest level of mechanical and dynamic mechanical properties was observed for 60/40 LLDPE/EMA blends at 2 wt % DCP. Addition of LLDPE‐g‐MA (3 wt %) as a compatibilizer enhances the properties of the vulcanizates. Blends crosslinked with DCP up to 0.3 wt % can easily be reprocessed. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

13.
考察了敏化剂和聚合物改性添加剂对聚乙烯的辐射交联效应。测定了敏化剂及添加剂用量,吸收剂量对交联聚乙烯各项性能的影响。结果表明,敏化剂及添加剂的加入能在较低吸收剂量下有效地提高PE的凝胶分数,改善其机械性能,提高了热性能。  相似文献   

14.
BACKGROUND: Poly(butylene adipate‐co‐terephthalate) (PBAT) has attracted wide interest as a biodegradable polymer. However, its use is restricted in certain applications due to its low melting point. RESULTS: PBAT was treated using γ‐radiation. The radiation features were analyzed using Soxhlet extraction, and the ratio of chain scission and crosslinking and gelation dose were determined using the classical Charlesby–Pinner equation. The results showed that PBAT is a radiation‐crosslinkable polymer. The degree of crosslinking increased with increasing radiation dose; the relation between sol fraction and dose followed the Charlesby–Pinner equation. Differential scanning calorimetry analyses showed that the melting temperature (Tm) and the heat of fusion (ΔHm) of PBAT exhibited almost no change in the first scan. The second scan, however, showed a decrease in Tm and ΔHm. The glass transition temperature of irradiated PBAT increased with increasing radiation dose. The weight loss of control and irradiated PBAT resulting from thermal degradation was a one‐step process. Moreover, the tensile strength and elongation at break decreased with an increase in radiation dose. However, the Young's modulus and stress at yield were not greatly affected by γ‐radiation. CONCLUSION: PBAT can be crosslinked using γ‐radiation. The crosslinking efficiency is relatively low. The thermal and mechanical properties of PBAT are affected by γ‐radiation. Copyright © 2009 Society of Chemical Industry  相似文献   

15.
The paper consides the effects of compatibilization with maleic anhydride grafted polypropylene (PP-g-MAH) on the propertie of immiscible blends of polypropylene (PP) and nylon 6 (N6). We prepared the blends by three different mixing processes; single-step blending, two-step blending with reactive premixing, and two-step blending with nonreactive premixing, to determine the effective mixiing process for fine morphological structure thermal stability, and mechanical properties. Dynamic melt reheological properties were measured to examine the modification of elastic properties by the compatibilizer. In addtion, thermal analysis was also carried out to detect the change in crystallization and thereby to probe the degree of compatibilizaton. The results show that compatibilized blends prepared by teh single-step process exhibit improved phase morphology, thermal stability, and mechanical properties for dried conditions, compared with other blend types. Finally, the water absorption test indicates that the added compatibilizer yields enhanced water resistance in spite of the strong intrinsic hydrophilicity of N6. In particular, two-step blending with reactive premixing is most effective in improving water resistance and reducing degradation of mechanical properties after moisture absorption.  相似文献   

16.
通过测试尼龙66纤维在热氧、光照、湿热条件下的强力损失,分析了尼龙66纤维老化降解的原因,提出了尼龙66老化降解的防范措施。结果表明:随热处理温度升高,相对湿度的增加,纤维的强力均逐渐降低。在尼龙66生产工艺中,适度提高尼龙66的结晶度,添加TiO2紫外光吸收剂、醋酸根端基封闭剂、醋酸铜/碘化钾热稳定剂,可有效防止尼龙66纤维的老化降解。  相似文献   

17.
Abstract

The effect of electron beam (EB) radiation on carbon fibre reinforced (CF) thermoplastic (PBT, PPS, PA) composites was investigated. To clarify whether crosslinking could take place without or only with the presence of a crosslinking agent, special attention was paid to the incorporation of this agent into polymer sheets with a carbon fibre content of 50% by volume. The thermal and mechanical properties of the materials before and after exposure under different irradiation doses were evaluated. For materials based on PBT, PPS and PA46, no significant changes in properties after irradiation could be observed. However, CF/PA66 exhibited some changes in the presence of a crosslinking agent after irradiation, which could be related to an irradiation-induced crosslinking reaction. The effect of irradiation on the flexural properties was insignificant but an improvement in the creep behaviour was observed. Non-reinforced PA66 plates were also manufactured and a gel content measurement indicated that crosslinking was successfully induced. Additional studies allowed the changes in the polymer due to this crosslink to be quantified.  相似文献   

18.
Binary nylon6/rubber blends with 50 or 60 weight percent of an EPDM rubber exhibit co-continuous morphologies and thereby relatively poor mechanical properties. This paper describes methods to develop nylon6/EPDM blends with a high amount of finely dispersed rubber particles embedded in a nylon matrix. Using a suitable compatibiliser and by slightly crosslinking the rubber phase during melt-mixing, it was possible to disperse up to 60 wt% rubber in the nylon matrix and to improve the mechanical properties markedly. These materials are called thermoplastic vulcanisates and exhibit good elastic properties with a thermoplastic processability. The influence of the compatibiliser, the crosslinking agent and the viscosity ratio rubber/thermoplastic on the blend phase morphology is investigated using transmission electron microscopy. It was found that the viscosity ratio rubber/nylon plays a crucial role in order to achieve a nylon6/rubber TPV with a fine rubber dispersion. The viscosity of the nylon phase should be low enough to shift the phase inversion towards higher rubber content. On the other hand, if the viscosity of the nylon is too low, a coarse blend morphology was achieved resulting in poor mechanical properties.  相似文献   

19.
Successful polymerization of nylon 12 6 was accomplished in two‐steps, the preparation of nylon salts and involvement of the salts with a pressure vessel followed by high temperature melt polymerization. Chemical composition, thermal properties, crystal structure, mechanical properties, and moisture absorption were characterized in detail. Melting temperature and glass transition temperature were recorded at 234°C and 75°C, respectively, while the β‐relaxation peak was determined to be ?64°C. The results indicated that nylon 12 6 could be used at a broad range of temperatures. Characterization of the mechanical properties showed that nylon 12 6 exhibited a better flexibility and elongation compared with other industrially important nylons. The moisture absorption of nylon 12 6 decreased by 36.7% compared with that of nylon 6 12, suggesting that nylon 12 6 will exhibit a better dimensional stability in the humid environment. Overall, in this research, the novel nylon, that is, the nylon 12 6, shows a relatively low water absorption and excellent toughness contributing to its potential technological application in the future. POLYM. ENG. SCI., 59:192–197, 2019. © 2018 Society of Plastics Engineers  相似文献   

20.
Novel cellulose ether hydrogels were prepared by the radiation‐induced crosslinking of hydroxypropyl methylcellulose phthalate (HPMCP) in a solution of Na2CO3. The effects of several factors, such as the HPMCP concentration, Na2CO3 concentration, absorbed dose, and dose rate, on the crosslinking of HPMCP were investigated in detail. An increase in the HPMCP concentration resulted in an increasing content of the gel fraction, and this meant that the crosslinking probability increased as well. Na2CO3 was essential for dissolving HPMCP in water, and a 4–5% Na2CO3 aqueous solution was optimal for the crosslinking of HPMCP. The dose rate also affected the radiation crosslinking of HPMCP; hydrogels with higher gel fractions and transparency could be formed at lower dose rates. The ratio of degradation to crosslinking of the gel was calculated according to the Charlesby–Rosiak equation, and it showed good agreement with the experimental results. Some important properties, such as the swelling kinetics, ion and ionic strength dependence, and pH dependence, of the HPMCP hydrogels were also investigated. The HPMCP hydrogels possessed excellent swelling rates and swelling ratios in some solvents, such as water and methanol, with a high hydrogen‐bonding parameter. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2123–2130, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号