首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Black tartary buckwheat oils (BTBOs) were extracted from five major industrial tartary buckwheat cultivars grown under similar agronomical activities and environmental conditions. These oils were characterized for the bioactive compounds containing fatty acids, β‐carotene, lutein, α‐, β‐, δ‐ and γ‐tocopherol, and for their antioxidant properties. The total tocopherol contents that were obtained ranged from 704.66 to 1156.19 mg/kg, with γ‐tocopherol (588.98–977.91 mg/kg) as the main component. The concentration of lutein ranged from 253.14 to 429.63 mg/kg, which was almost ten times higher than that of β‐carotenoid (46.71–69.2 mg/kg), indicating that black tartary buckwheat seed oils were a good source of lutein. The predominant fatty acids were unsaturated oleic acid (C18:1) (35.27–40.61 %) and linoleic acid (C18:2) (38.25–42.90 %). Excellent values of 2,2‐diphenyl‐1‐picrylhydrazyl radical (DPPH), diammonium salt (ABTS) radical scavenging activities were obtained and the highest oxygen radical absorbance capacity (ORAC) value of 13.89 mmol Trolox equiv/g oil was detected in the variety of Chuanqiao No. 1, which was clearly separated by principal component analysis (PCA) on the basis of the highest content of tocopherols and carotenoids. Moreover, the correlation analysis showed that tocopherols and carotenoids were the major contributors to the antioxidant activities of the BTBOs. This study demonstrates that lipophilic extraction in the tartary buckwheat seed contains many interesting bioactive compounds, which are beneficial for human health.  相似文献   

2.
The antioxidant activities of the essential oil and crude methanolic extract (CEx) of cumin seed (Cuminum cyminum) were evaluated. Total phenolics and tocopherols contents, reducing power, DPPH radical‐scavenging capacity (EC50), and the oxidative/oil stability index were assessed. The contents of total phenolics and total tocopherols in the essential oil (18.47 and 0.11 mg/g, respectively) were significantly lower than those of the CEx (29.12 and 0.42 mg/g, respectively). The CEx had an EC50 value (0.74 mg/mL) significantly lower than those of the essential oil and α‐tocopherol (1.20 and 32.50 mg/mL, respectively). The reducing power of the CEx (459.46 mmol Fe2+ per mass) was significantly higher than those of the essential oil (18.47 mmol/L) and α‐tocopherol (99.96 mmol/L). The addition of CEx to the purified sunflower oil significantly improved its oxidative stability at the levels of 800 ppm and higher whereas the essential oil indicated no antioxidant activity at the levels experimented (200–2000 ppm). The CEx was considered to be a useful antioxidative compound in bulk oil and emulsion systems but the essential oil showed no antioxidant activities. The CEx in the bulk oil system had higher antioxidant activities than in the emulsion system. The CEx concentration of 2000 ppm showed the highest antioxidant activity and reduced the formation of hydroperoxides and secondary products more than the other antioxidative compounds applied in this study.  相似文献   

3.
Ultrasound‐assisted extraction (UAE) and conventional solid–liquid extraction were applied to extract total antioxidants from two rapeseed varieties. The antioxidant capacities (AC) of winter and spring rapeseed cultivars were determined by four different analytical methods: ferric reducing antioxidant power (FRAP), cupric reducing antioxidant capacity (CUPRAC), 2,2′‐diphenyl‐1‐picrylhydrazyl (DPPH), 2,2′‐azino‐bis‐3‐ethylbenzothiazoline‐6‐sulfonic acid (ABTS). The average AC of the studied rapeseed cultivars ranged between 4.21–10.03 mmol Trolox (TE)/100 g, 7.82–10.61 mmol TE/100 g, 8.11–51.59 mmol TE/100 g, 22.48–43.13 mmol TE/100 g for FRAP, CUPRAC, DPPH and ABTS methods, respectively. There are positive correlations between total phenolics (TPC = 804–1625 mg sinapic acid (SA)/100 g) and AC of the studied rapeseed extracts (r = 0.2650–0.9931). Results of the principal component analysis (PCA) indicate that there are differences between the total amounts of antioxidants in rapeseed samples extracted by different extraction techniques. Rapeseed extracts obtained after 18 min of ultrasonication revealed the highest content of total antioxidants. The UAE is a very useful, efficient and rapid technique of oilseed samples preparation for determination of AC by different analytical methods.  相似文献   

4.
The present study was conducted to know the possible influence of the seed treatment, method of extraction and geographical origin on the quality and chemical composition of argan oil. Artisanally and semiautomatically extracted argan oils, from roasted and unroasted seeds, from interior and coast areas, were studied. The quality parameters analyzed were acid value, peroxide value, K232 and K270, triacylglycerols and fatty acid composition, polar compounds, total phenols, tocopherol content and oil stability index (OSI). Seed treatment and extraction method showed a higher influence on quality parameters than geographical area; the quality parameters of the different oils were discussed. The total phenolic content in all analyzed samples was lower than 10 ppm. γ‐Tocopherol was the major tocopherol (84.4–86.4%) with a high contribution to the total tocopherol content (383–485 ppm). The OSI of the argan oil samples were well correlated (R = 0.97) with the tocopherol contents. The argan oil samples obtained from roasted seeds presented higher stability (26–38 h) than the oils from unroasted seeds (16–32 h).  相似文献   

5.
Four different antioxidant activity assays including 2,2′‐azino‐bis(3‐ethylbenzothiazoline‐6‐sulfonic acid (ABTS), 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP) and oxygen radical absorption capacity (ORAC), and thiobarbituric acid reactive substances were performed on the methanolic and ethyl acetate extracts of Camelina seeds (CS), flaxseeds (FS), Camelina meal low fat (CMLF, 9.9% fat), Camelina meal high fat (CMHF, 24.6% fat), and flaxseed meal (FSM, 2.7% fat). In addition, the fatty acid profile, and phenolic, tocopherol, flavonoid, and glucosinolate contents of CS, FS, CMLF, CMHF, and FSM were studied. The major fatty acid was α‐linolenic acid (C18:3 n‐3) which was 33.2, 29.4, 30.2, 60.1, and 39.3% in CS, CMLF, CMHF, FS, and FSM, respectively. The methanolic extract of CMLF showed the highest values of ABTS, DPPH and FRAP and the highest content of phenolic compounds, flavonoids, and glucosinolates. The methanolic and ethylacetate extracts of CMHF showed the highest values for ORAC and α‐ and γ‐tocopherols. The ethylacetate extracts of seeds and meals of Camelina sativa and flax showed lower values for antioxidant activity, phenolic compounds, and flavonoids than the methanolic extracts. In general, Camelina and FS meals showed higher antioxidant activities, and phenolic and flavonoid contents than their respective seeds. Practical applications: Camelina sativa seeds (CS) and flaxseeds (FS) are rich sources of omega 3 oils. Their by‐products after oil extraction are an attractive source of proteins, lipids, fiber, and natural bioactive compounds such as antioxidants. These by‐products may be used to improve nutritional value and prevent lipid oxidation in feed or food systems.  相似文献   

6.
Varieties of the olive cultivar Arbequina have recently been cultivated in Turkey. The objective of the study is to characterize and evaluate extra‐virgin olive oils (EVOO) produced from Arbequina grown in the Aegean and Mediterranean regions of Turkey. Major and minor components such as carotenoids, squalene, phenolics and tocopherols were studied to assess their effects on product quality and health benefits. The samples, identified as ArbqI and ArbqA, were from the Izmir and Adana provinces, respectively. Samples were analyzed by GC‐FID to determine fatty acid composition, sterol composition, TAG profile and squalene content. Individual phenolic fractions were analyzed by LC–MS/MS and tocopherol isomers were determined by HPLC. According to the results obtained from this study; Total phenolic content (TPC) of the samples were 454.68 and 50.86 mg Gallic acid/kg oil for ArbqI and ArbqA, respectively. Hydroxytyrosol and tyrosol were determined to be the main phenols. The major tocopherol isomer found in ArbqI and ArbqA was α‐tocopherol with levels of 179.55 and 202.5 mg/kg oil, respectively. β‐Carotene levels in both samples were similar at 0.2 mg/kg. Findings of this study were compared with the literature on Arbequina olive oil produced in different countries. It was determined that Arbequina olive oil of high quality can be produced in Turkey, especially in the Aegean region.  相似文献   

7.
A rapid Fourier transformed infrared (FTIR) attenuated total reflectance (ATR) spectroscopic method was applied to the determination of water content (WC), total phenol amount (TP) and antioxidant activity (ABTS . +) of virgin olive oils (VOO) and olive oils. Calibration models were constructed using partial least squares regression. Oil samples with WC ranging from 289 to 1402 mg water/kg oil, with TP from 46 to 877 mg gallic acid/kg oil and with ABTS . + from 0 to 5.7 mmol Trolox/kg oil were considered for chemometric analysis. Better results were obtained when selecting suitable spectral ranges; in particular, from 2260 to 1008 cm?1 for WC, from 3610 to 816 cm?1 for TP and from 3707 to 1105 cm?1 for ABTS . +. Satisfactory LOD values by the FTIR‐chemometric methods were achieved: 9.4 (mg/kg oil) for WC; 12.5 (mg gallic acid/kg oil) for TP, and 0.76 (mmol Trolox/kg oil) for ABTS . +. The evaluation of the applicability of these analytical approaches was tested by use of validation sample sets (n = 16 for WC, n = 11 for TP and n = 14 for ABTS) with nearly quantitative recovery rates (99–114%). The FTIR–ATR method provided results that were comparable to conventional procedures. Practical applications : The presented method is based on ATR–FTIR in combination with multivariate calibration methodologies and permits a simultaneous evaluation of important quality parameters of VOO (WC, TP and ABTS . +). This approach represents an easy and convenient means for monitoring olive oil quality with the advantage of ease of operation, speed, no sample pretreatment and no consumption of solvents. The data obtained with this method are comparable to those obtained using the official reference method. Therefore, the technique is highly plausible as an alternative to the standard procedure for routine analysis or control at‐line of production processes.  相似文献   

8.
In the present study, mulberry seed oil (MSO) samples obtained from seeds of different mulberry varieties as well as concentrated mulberry juice production waste (mulberry pomace) were investigated. Radical scavenging capacity, tocopherol and total phenolic content of MSO were determined. It was observed that MSO contain unique amounts of δ‐tocopherol varying between 1645–2587 mg kg?1 oil depending on the variety. The secondary tocopherol homologue was γ‐tocopherol within a concentration range of 299–854 mg kg?1 oil. MSO exhibited a very high antioxidant capacity varying in the range of 1013–1743 and 2574–4522 mg α‐tocopherol equivalents (α‐TE) per kg of oil for 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH) and freeze‐dried 2,2′‐azino‐bis (3‐ethylbenzothiazoline‐6‐sulfonic acid) (FD‐ABTS) radical cation assays, respectively. Both antioxidant capacity and total phenolic content were higher for mulberry pomace oil compared with the seed oils. Fatty acid composition of MSO was also determined, and linoleic acid was found to be the primary fatty acid (66–80 %).  相似文献   

9.
Cold-pressed onion, parsley, cardamom, mullein, roasted pumpkin, and milk thistle seed oils were characterized for their fatty acid (FA) composition, tocopherol content, carotenoid profile, total phenolic content (TPC), oxidative stability index (OSI), color, physical properties, and radical-scavenging capacities against peroxyl (oxygen radical-scavenging capacity) and stable DPPH (diphenylpicrylhydrazyl) radicals. Parsley seed oil had the highest oleic acid content, 81 g/100 g total FA, and the lowest saturated fat among the tested oils. Roasted pumpkin seed oil contained the highest level of total carotenoids, zeaxanthin, β-carotene, cryptoxanthin, and lutein at 71 μmol/kg and 28.5, 6.0, 4.9, and 0.3 mg/kg oil, respectively. Onion seed oil exhibited the highest levels of α- and total tocopherols under the experimental conditions. One of the parsley seed oils exhibited the strongest DPPH scavenging capacity and the highest oxygen radical absorbance capacity (ORAC) value of 1098 μmol Trolox equiv/g oil. However, ORAC values of the tested seed oils were not necessarily correlated to their DPPH scavenging capacities under the experimental conditions. The highest TPC of 3.4 mg gallic acid equiv/g oil was detected in one of the onion seed oils. The OSI values were 13.3, 16.9–31.4, 47.8, and 61.7 h for the milk thistle, onion, mullein, and roasted pumpkin seed oils, respectively. These data suggest that these seed oils may serve as dietary sources of special FA, tocopherols, carotenoids, phenolic compounds, and natural antioxidants. An erratum to this article is available at .  相似文献   

10.
In view of the growing demand for vegetable oil, currently exploration of some non‐conventional oils is of great concern. This study firstly analyzed the contents of fatty acids, phytosterols, and tocopherols in Catalpa ovata seed oil collected from four different Provinces in China. Then the composition of flavonoids as well as their antioxidant activities in defatted seed meal was determined. The results showed that the relative oil content in C. ovata seeds ranged from 24.0 to 36.0 % and seed oil was mainly composed of fatty acids linoleic acid (43.4–50.1 %), α‐linolenic acid (23.8–24.4 %), and oleic acid (13.1–16.2 %). The content of unsaturated fatty acids was up to 85.0 %. Sterol in seed oil mainly contained campesterol, stigmasterol, and β‐sitosterol. β‐sitosterol accounted for 74.0 % of the total sterol. The tocopherol content was 173.0–225.7 mg/100 g. Defatted seed meal from Hubei Province showed the highest content of total flavonoids (11 mg/g) and the strongest activities for DPPH radicals scavenging, ABTS radicals scavenging, and ferric reducing antioxidant power compared with other defatted seed meal in this study. Seven flavonoids were identified from C. ovata seed meal. These results suggest that C. ovata seeds may be developed as a new source of oil and can also be properly used in pharmaceuticals and cosmetics.  相似文献   

11.
Antioxidant properties of mono‐ and dihydroxyphenolic acids and their alkyl esters were examined, with emphasis on the relationship between their molecular structure and antioxidant activity. Test media with different tocopherol level were used for determining the oxidative stability: original refined sunflower oil (total tocopherols 149.0 mg/kg), partially tocopherol‐stripped sunflower oil (total tocopherols 8.7 mg/kg) and distilled fatty acid methyl esters (FAME) as a tocopherol‐free medium. The chemical reaction of tocopherols with diazomethane tested for the purpose to eliminate their antioxidant activity failed due to the negligible degree of methylation of hydroxyl group in the tocopherol molecule. Caffeic acid and protocatechuic acid (3,4‐dihydroxyphenolic acids) and their alkyl esters were found to be more active antioxidants than monohydroxyphenolic acid (p‐hydroxybenzoic acid), 2,5‐dihydroxyphenolic acid (gentisic acid), 3‐methoxy‐4‐hydroxyphenolic acids (vanillic and ferulic acids) and their corresponding alkyl esters. Naturally present tocopherols in refined sunflower oil proved to have a synergistic effect on gentisic acid but not on its alkyl esters. In contrast, tocopherols showed an antagonistic effect on alkyl esters of caffeic acid, because their protection factors decreased with increasing level of tocopherols in the test medium. Moreover, the antioxidant activity of these alkyl esters decreased with increasing length of their alkyl chain in conformity with the polar paradox hypothesis. Practical applications: Tocopherols as naturally present antioxidants influence considerably the antioxidant activity of other antioxidants added to plant oils used as a test medium. Distilled fatty acid methyl esters prepared from refined sunflower oil may serve as an optimal tocopherol‐free test medium. Some alkyl esters of phenolic acids were evaluated to be applicable as natural more lipophilic antioxidants in comparison with phenolic acids.  相似文献   

12.
γ‐Tocopherol‐5,6‐quinone (tocored) is a crucial oxidized product of γ‐tocopherol (γ‐T) found in edible oil. Previously published studies on antioxidant activity (AOA) of tocored are not consistent. This study aims to monitor its AOA comprehensively through chemical assays (1,1‐diphenyl‐2‐picrylhydrazyl [DPPH] and ferric reducing antioxidant power [FRAP]), antioxidant evaluation in a food model system (stripped corn oil), and cellular antioxidant activity (CAA) assay, which would reasonably widen the knowledge of the AOA of γ‐T and tocored. In both DPPH and FRAP assays, tocored shows less AOA than γ‐T. Results of chemical properties in the Schaal oven test show that tocored possesses better AOA than γ‐T. Correlation coefficients of γ‐T and tocored between peroxide and K234 or p‐AnV are 0.8784–0.9875 and 0.8716–0.9879, respectively. The CAA assay also shows that tocored possesses better cellar AOA than γ‐T, with an EC50 at 21.55 µg mL?1. Drawing conclusions from the results from chemical assays, evaluation in stripped corn oil, and CAA assay, tocored is verified as a potent antioxidant in edible vegetable oils compared to γ‐T. Practical Applications: The present work widens the knowledge of antioxidant activity of tocored and gamma‐tocopherol, and contributes to the understanding of existing antioxidant activity when gamma tocopherol is depleted when edible oils are in storage and processing processes.  相似文献   

13.
As the use of tocopherols as natural antioxidants increases, it is economically and agronomically important to determine the range, composition, and factors that affect their levels in oilseed crops, a major commercial source. In this study, tocopherols were quantified from seeds of wheat, sunflower, canola, and soybean. The breeding lines analyzed possessed a broad range of economically important phenotypic traits such as disease or herbicide resistance, improved yield and agronomic characteristics, and altered storage oil fatty acid composition. Complete separation of all four native tocopherols was achieved using normal-phase high-performance liquid chromatography with ultraviolet detection. Total tocopherol concentration among wheat germ oil samples ranged from 1947 to 4082 μg g−1. Total tocopherol concentration ranges varied from 534 to 1858 μg g−1 in sunflower, 504 to 687 μg g−1 in canola, and 1205 to 2195 μg g−1 among the soybean oils surveyed. Although the composition of tocopherols varied substantially among crops, composition was stable within each crop. Total tocopherol concentration and the percentage linolenic acid were correlated positively in soybean oils with modified and unmodified fatty acid compositions. Tocopherol concentration and degree of unsaturation were not correlated in sunflower or canola seeds with genetically altered fatty acid composition. These findings suggest that breeding for altered storage oil fatty acid composition did not negatively impact tocopherol concentrations in sunflower and canola as they apparently did in soybeans. When 12 soybean breeding lines were grown at each of five locations, significant correlations were observed among planting location, breeding line, tocopherol concentration, and fatty acid composition. Analysis of seeds that matured under three different controlled temperature regimes suggests that the relationship between tocopherol concentration level and unsaturated fatty acids in commodity (not genetically modified for fatty acid composition) oil types is due to temperature effects on the biosynthesis of both compounds.  相似文献   

14.
Increasing population has resulted in overexploitation of conventional seeds. The limited supply of water and salinization of agricultural lands are threats to crop production. This creates food insecurity and results in ever‐increasing prices of crops and edible oils. Halophytes that produce high‐quality seeds can serve as sources of oil and edible products. We analyzed the chemical composition and antioxidant activity of seeds from 5 halophytic grasses, i.e., Aeluropus lagopoides, Eragrostis ciliaris, Eragrostis pilosa, Panicum antidotale, and Sporobolus ioclados. These seeds contained crude protein (10–29%), carbohydrates (32–55%), crude fiber (4–21%), minerals (3.8–9.2%), and oil (4–11%), indicating their nutritional potential. Oils of these seeds had suitable fatty‐acid composition with 62–82% unsaturation and only 17–24% saturation. Out of this, 91–94% of the total oil constituted by linoleic, oleic, and palmitic acids. High contents of total phenols (2.8–4.2 mg gallic acid equivalent [GAE] g?1), flavonoids (0.5–1.3 mg Quercetin equivalent [QE] g?1), and tannins (0.3–1.3 mg catechin equivalent [CE] g?1) supported their high antioxidant activity (1,1‐Diphenyl‐2‐picryl‐hydrazyl (DPPH) activity in terms of half maximal inhibitory concentration‐IC50 1.1–5.86 mg mL?1; 2,2′‐azino‐bis3‐ethylbenzothiazoline‐6‐sulphonic acid (ABTS) 18.8–72.8 mmol Trolox g?1; ferric‐reducing antioxidant power 2.0–4.4 mmol Fe+2 g?1). The reverse phase‐high‐pressure liquid chromatography analysis identified the presence of bioactive phenolic antioxidants (mainly gallic acid, chlorogenic acid, coumaric acid, ferulic acid, kaempferol, and quercetin). Due to these characteristic composition and salt tolerability, these plants can serve as potential sources of industrial raw materials for food, edible oil, phytochemicals, and oliochemicals.  相似文献   

15.
The influence of agronomical factors (two growing areas and four harvest periods) and storage conditions of virgin olive oils (room temperature, +4 and ?20 °C) on tocopherols was investigated on two cultivars having significantly different tocopherol content (Oblica 269–443 mg/kg, Leccino 403–784 mg/kg). α‐Tocopherol accounted for 97 % of total tocopherols and its content decreased during ripening of both cultivars. In a warmer growing area both cultivars gained a higher γ‐tocopherol content while only Leccino showed a higher content of α‐tocopherol. After 12 months of storage α‐tocopherol content decreased by up to 27 %. Lower storage temperatures did not always contribute to the higher stability of α‐tocopherol compared to room temperature.  相似文献   

16.
Acer truncatum seed oil rich in nervonic acid was extracted using supercritical carbon dioxide. GC (Gas Chromatography) analysis revealed that the oil contained approximately 6.22% nervonic acid. The sn‐2 compositions were also determined using lipase hydrolysis. A total of 52 triacylglycerides (TAG) were tentatively identified in the oil using an ultra‐performance convergence chromatography (UPC2) coupled with quadrupole time‐of‐flight mass spectrometry (Q‐TOF‐MS) for the first time. In addition, the contents of phytosterols (1961.9–2402.8 μmol/kg) and β‐carotene (2.09–2.35 μmol/kg) were also quantified for the first time, along with tocopherols (2352.0–2654.3 μmol/kg). The γ‐tocopherol (1296.9‐1442.3 μmol/kg) was the primary tocopherol, while β‐sitosterol (1355.2–1631.3 μmol/kg) was the dominant phytosterol. The physicochemical properties of the oil were also investigated. This study indicated that A. truncatum seed oil is rich in nervonic acid and other nutraceutical constituents. It has a high potential in functional foods for improving human health.  相似文献   

17.
The antioxidant effects of hydrophilic phenols and tocopherols on the oxidative stability in virgin olive oils and in purified olive oil have been evaluated. Total hydrophilic phenols and the oleosidic forms of 3,4-dihydroxyphenolethanol (3,4-DHPEA) were correlated (r=0.97) with the oxidative stability of virgin olive oil. On the contrary, tocopherols showed low correlation (r=0.05). Purified olive oil with the dialdehydic form of elenolic acid linked to 3,4-DHPEA, an isomer of oleuropeine aglycon, and 3,4-DHPEA had good oxidative stability. A synergistic effect was observed in the mixture of 3,4-DHPEA and its oleosidic forms with α-tocopherol in purified olive oil by the Rancimat method at 120°C.  相似文献   

18.
To develop the potential applications of Plantago plants, seed oils were extracted from 14 cultivars of Plantago around China. Their fatty acid profiles, tocopherols, carotenoid compositions, anti‐inflammatory and antioxidant properties were also investigated. The Plantago seed oils (PSO) were abundant in linolenic acid from 11.12 to 29.36 g/100 g oil and had low fatty acid ratio of n‐6/n‐3 ratio matched with the dietary recommendations. The tocopherol contents of PSO ranged from 693.25 to 3708.80 μg/g and the lutein contents ranged from 2.29 to 26.68 μg/g. The PSO showed significant inhibitory effects on TNF‐α, IL‐1β, and COX‐2 mRNA expression in RAW 264.7 mouse macrophage cells induced by LPS. In addition, the properties on scavenging DPPH, oxygen and hydroxyl radicals indicated that PSO had potential antioxidant properties. The results could develop PSO as novel functional foods to improve human health.  相似文献   

19.
The influence of extraction method on yield, physicochemical characteristics and tocopherol content of manketti nut oil extracted by four different methods has been determined. Soxhlet (SE) and supercritical fluid (SFE) extractions yielded 45.3 and 44.8%, respectively, while screw press and mechanical shaking extractions had 39.7 and 27.3%, respectively. SPE and SE extractions gave oils that had lower values of unsaponifiable matter (0.70; 0.74%) indicating lower amounts of minor components such as tocopherols (233.13; 290.68 µg/g oil), a greater extent of lipid peroxidation parameters; peroxide values (6.25; 3.01 mequiv O2/kg), para‐anisidine values (10.22; 9.94), totox value (22.72; 15.96), flavour score (?0.25; 2.11), and high acid values (1.23; 1.03 mg KOH/g oil), respectively, compared to SFE and MSE oils. This was attributed to the high processing temperatures of SPE and SE extractions compared to SFE and MSE oils. Refractive indices (1.485–1.487), iodine values (127.97–129.07, Wijs) and density (0.908–0.914 g/cm3) were not affected by extraction method indicating that the oils generally had the same double bond content. Saponification values (182.98–192.95 mg KOH/g oil) and ester values (181.95–192.11), were not affected by extraction method except for SE oil which had lower values that were speculated to be due to co‐extraction with colour pigments.  相似文献   

20.
The effects of enzyme‐assisted cold‐pressing (EACP) on the physicochemical attributes of Cannabis sativa (hemp) seed oil were investigated using five enzyme preparations: Protex 7L, Viscozyme L, Kemzyme, Feedzyme, and Natuzyme. The oil contents (28.4–32.8%) offered by the enzyme‐treated hempseeds were found to be significantly (p <0.05) higher than that determined for the control (26.7%). The protein, fiber, and ash contents of the seeds were unaffected by the enzyme treatment. There were no significant (p >0.05) variations observed for the values of iodine number, refractive index, density, unsaponifiable matter and fatty acid composition between the enzyme‐extracted and control hempseed oils. The levels of saponification value, free fatty acids, iodine value and peroxide value were slightly varied between the oils tested. The color intensity of the enzyme‐extracted oils was also higher than that of the control oil. A relatively higher level of tocopherols (724.4–788.8 mg/kg) was observed in the enzyme‐extracted oils compared to the control (691.2 mg/kg), showing an enhancement of ca. 4.8–14.1% in the total tocopherols. The Rancimat profiles and sensory scores of the enzyme‐extracted oils were noted to be improved compared to the control. The results of the present analysis (with respect to the control) showed that the enzyme added during the hempseed cold‐pressing resulted in considerably higher oil yields, without adversely affecting the quality of the oil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号