首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Rhinovirus infections cause over one third of all colds and are a contributing factor to exacerbations of asthma. To gain insights into the early biochemical events that occur in infected epithelial cells, we develop, for the first time, a model in which a pure respiratory epithelial cell population can be routinely infected by rhinovirus. Viral infection was confirmed by demonstrating that viral titers of supernatants and lysates from infected cell increased with time and by PCR. Infection by rhinovirus 14 was inhibited by homotypic antiserum and by antibodies to intercellular adhesion molecule-1 (ICAM-1), the receptor for this virus. Susceptibility of epithelial cells to infection by rhinovirus 14 (but not rhinovirus 2, an ICAM-1 independent strain) can be increased by preexposure of cells to TNF alpha, whereas IFN gamma reduces susceptibility to infection by both rhinovirus strains. Rhinovirus infection per se does not markedly alter ICAM-1 expression on epithelial cells. Finally, we demonstrate that rhinovirus infection induced increased production of IL-8, IL-6, and GM-CSF from epithelial cells. Production of IL-8 correlated with viral replication during the first 24 h after infection. This model should provide useful insights into the pathogenesis of rhinovirus infections.  相似文献   

2.
Airway inflammation, mucosal edema, epithelial hyperpermeability, mucus secretion and airway smooth muscle contraction induced by airway bacterial, virus infection and exposure to air pollution may be associated with COPD exacerbation. Severity of COPD exacerbation is estimated by blood gas analysis, serum CRP values and the chest radiograph. Patients with COPD exacerbations are recommended to be treated with additional inhalations of beta-2 agonists and anti -cholinergic agents, systemic administered glucocorticosteroids, oxygen inhalation, and, in cases with purulent sputum, antibiotics. Glucocorticosteroids, beta-2 agonists and anti-cholinergic agents reduce the frequency of COPD exacerbation. We reported the inhibitory effects of glucocorticosteroids on rhinovirus infection, the major cause of common colds, and the inhibitory effects of L-carbocisteine and erythromycin on COPD exacerbations and rhinovirus infection.  相似文献   

3.
An important interplay exists between specific viral respiratory infections and altered airway responsiveness in the development and exacerbations of asthma. However, the mechanistic basis of this interplay remains to be identified. This study addressed the hypothesis that rhinovirus (RV), the most common viral respiratory pathogen associated with acute asthma attacks, directly affects airway smooth muscle (ASM) to produce proasthmatic changes in receptor-coupled ASM responsiveness. Isolated rabbit and human ASM tissue and cultured ASM cells were inoculated with human RV (serotype 16) or adenovirus, each for 6 or 24 h. In contrast to adenovirus, which had no effect, inoculation of ASM tissue with RV induced heightened ASM tissue constrictor responsiveness to acetylcholine and attenuated the dose-dependent relaxation of ASM to beta-adrenoceptor stimulation with isoproterenol. These RV-induced changes in ASM responsiveness were largely prevented by pretreating the tissues with pertussis toxin or with a monoclonal blocking antibody to intercellular adhesion molecule-1 (ICAM-1), the principal endogenous receptor for most RVs. In extended studies, we found that the RV-induced changes in ASM responsiveness were associated with diminished cAMP accumulation in response to dose-dependent administration of isoproterenol, and this effect was accompanied by autologously upregulated expression of the Gi protein subtype, Gialpha3, in the ASM. Finally, in separate experiments, we found that the RV-induced effects on ASM responsiveness were also accompanied by autologously induced upregulated mRNA and cell surface protein expression of ICAM-1. Taken together, these findings provide new evidence that RV directly induces proasthmatic phenotypic changes in ASM responsiveness, that this effect is triggered by binding of RV to its ICAM-1 receptor in ASM, and that this binding is associated with the induced endogenously upregulated expression of ICAM-1 and enhanced expression and activation of Gi protein in the RV-infected ASM.  相似文献   

4.
Asthma is a common and debilitating disease that has substantially increased in prevalence in Western Societies in the last 2 decades. Respiratory tract infections by respiratory syncytial virus (RSV) and rhinovirus (RV) are widely implicated as common causes of the induction and exacerbation of asthma. These infections in early life are associated with the induction of wheeze that may progress to the development of asthma. Infections may also promote airway inflammation and enhance T helper type 2 lymphocyte (Th2 cell) responses that result in exacerbations of established asthma. The mechanisms of how RSV and RV induce and exacerbate asthma are currently being elucidated by clinical studies, in vitro work with human cells and animal models of disease. This research has led to many potential therapeutic strategies and, although none are yet part of clinical practise, they show much promise for the prevention and treatment of viral disease and subsequent asthma.  相似文献   

5.
ABSTRACT: BACKGROUND: Human rhinoviruses, major precipitants of asthma exacerbations, induce lower airway inflammation and mediate angiogenesis. The purpose of this study was to assess the possibility that rhinoviruses may also contribute to the fibrotic component of airway remodeling. METHODS: Levels of basic fibroblast growth factor (bFGF) mRNA and protein were measured following rhinovirus infection of bronchial epithelial cells. The profibrotic effect of epithelial products was assessed by DNA synthesis and matrix metalloproteinase activity assays. Moreover, epithelial cells were exposed to supernatants from cultured peripheral blood mononuclear cells, obtained from healthy donors or atopic asthmatic subjects and subsequently infected by rhinovirus and bFGF release was estimated. bFGF was also measured in respiratory secretions from atopic asthmatic patients before and during rhinovirus-induced asthma exacerbations. RESULTS: Rhinovirus epithelial infection stimulated mRNA expression and release of bFGF, the latter being positively correlated with cell death under conditions promoting rhinovirus-induced cytotoxicity. Supernatants from infected cultures induced lung fibroblast proliferation, which was inhibited by anti-bFGF antibody, and demonstrated increased matrix metalloproteinase activity. Rhinovirus-mediated bFGF release was significantly higher in an in vitro simulation of atopic asthmatic environment and, importantly, during rhinovirus-associated asthma exacerbations. CONCLUSIONS: Rhinovirus infection induces bFGF release by airway epithelium, and stimulates stroma cell proliferation contributing to airway remodeling in asthma. Repeated rhinovirus infections may promote asthma persistence, particularly in the context of atopy; prevention of such infections may influence the natural history of asthma.  相似文献   

6.
Exacerbations of chronic obstructive pulmonary disease   总被引:3,自引:0,他引:3  
Wedzicha JA  Donaldson GC 《Respiratory care》2003,48(12):1204-13; discussion 1213-5
Exacerbations of chronic obstructive pulmonary disease (COPD) cause morbidity, hospital admissions, and mortality, and strongly influence health-related quality of life. Some patients are prone to frequent exacerbations, which are associated with considerable physiologic deterioration and increased airway inflammation. About half of COPD exacerbations are caused or triggered primarily by bacterial and viral infections (colds, especially from rhinovirus), but air pollution can contribute to the beginning of an exacerbation. Type 1 exacerbations involve increased dyspnea, sputum volume, and sputum purulence; Type 2 exacerbations involve any two of the latter symptoms, and Type 3 exacerbations involve one of those symptoms combined with cough, wheeze, or symptoms of an upper respiratory tract infection. Exacerbations are more common than previously believed (2.5-3 exacerbations per year); many exacerbations are treated in the community and not associated with hospital admission. We found that about half of exacerbations were unreported by the patients, despite considerable encouragement to do so, and, instead, were only diagnosed from patients' diary cards. COPD patients are accustomed to frequent symptom changes, and this may explain their tendency to underreport exacerbations. COPD patients tend to be anxious and depressed about the disease and some might not seek treatment. At the beginning of an exacerbation physiologic changes such as decreases in peak flow and forced expiratory volume in the first second (FEV(1)) are usually small and therefore are not useful in predicting exacerbations, but larger decreases in peak flow are associated with dyspnea and the presence of symptomatic upper-respiratory viral infection. More pronounced physiologic changes during exacerbation are related to longer exacerbation recovery time. Dyspnea, common colds, sore throat, and cough increase significantly during prodrome, indicating that respiratory viruses are important exacerbation triggers. However, the prodrome is relatively short and not useful in predicting onset. As colds are associated with longer and more severe exacerbations, a COPD patient who develops a cold should be considered for early therapy. Physiologic recovery after an exacerbation is often incomplete, which decreases health-related quality of life and resistance to future exacerbations, so it is important to identify COPD patients who suffer frequent exacerbations and to convince them to take precautions to minimize the risk of colds and other exacerbation triggers. Exacerbation frequency may vary with the severity of the COPD. Exacerbation frequency may or may not increase with the severity of the COPD. As the COPD progresses, exacerbations tend to have more symptoms and take longer to recover from. Twenty-five to fifty percent of COPD patients suffer lower airway bacteria colonization, which is related to the severity of COPD and cigarette smoking and which begins a cycle of epithelial cell damage, impaired mucociliary clearance, mucus hypersecretion, increased submucosal vascular leakage, and inflammatory cell infiltration. Elevated sputum interleukin-8 levels are associated with higher bacterial load and faster FEV(1) decline; the bacteria increase airway inflammation in the stable patient, which may accelerate disease progression. A 2-week course of oral corticosteroids is as beneficial as an 8-week course, with fewer adverse effects, and might extend the time until the next exacerbation. Antibiotics have some efficacy in treating exacerbations. Exacerbation frequency increases with progressive airflow obstruction; so patients with chronic respiratory failure are particularly susceptible to exacerbation.  相似文献   

7.
The respiratory tract surface is protected from inhaled pathogens by a secreted layer of mucus rich in mucin glycoproteins. Abnormal mucus accumulation is a cardinal feature of chronic respiratory diseases, but the relationship between mucus and pathogens during exacerbations is poorly understood. We identified elevations in airway mucin 5AC (MUC5AC) and MUC5B concentrations during spontaneous and experimentally induced chronic obstructive pulmonary disease (COPD) exacerbations. MUC5AC was more sensitive to changes in expression during exacerbation and was therefore more predictably associated with viral load, inflammation, symptom severity, decrements in lung function, and secondary bacterial infections. MUC5AC was functionally related to inflammation, as Muc5ac-deficient (Muc5ac–/–) mice had attenuated RV-induced (RV-induced) airway inflammation, and exogenous MUC5AC glycoprotein administration augmented inflammatory responses and increased the release of extracellular adenosine triphosphate (ATP) in mice and human airway epithelial cell cultures. Hydrolysis of ATP suppressed MUC5AC augmentation of RV-induced inflammation in mice. Therapeutic suppression of mucin production using an EGFR antagonist ameliorated immunopathology in a mouse COPD exacerbation model. The coordinated virus induction of MUC5AC and MUC5B expression suggests that non-Th2 mechanisms trigger mucin hypersecretion during exacerbations. Our data identified a proinflammatory role for MUC5AC during viral infection and suggest that MUC5AC inhibition may ameliorate COPD exacerbations.  相似文献   

8.
Many patients with asthma have increased wheezing with colds. We hypothesized that rhinovirus colds might increase asthma by augmenting airway allergic responses (histamine release and eosinophil influx) after antigen challenge. Seven allergic rhinitis patients and five normal volunteers were infected with rhinovirus type 16 (RV16) and evaluated by segmental bronchoprovocation and bronchoalveolar lavage. Segmental challenge with saline and antigen was performed 1 mo before infection, during the acute infection, and 1 mo after infection. Lavage was performed immediately and 48 h after antigen challenge. Data were analyzed by two-way analysis of variance, and a P value of < or = 0.05 was considered to be significant. All volunteers inoculated with RV16 developed an acute respiratory infection. BAL fluid obtained from allergic rhinitis subjects during the acute viral infection, and 1 mo after infection, showed the following significant RV16-associated changes after antigen challenge: (a) an enhanced release of histamine immediately after local antigen challenge; (b) persistent histamine leak 48 h afterwards; and (c) a greater recruitment of eosinophils to the airway 48 h after challenge. These changes were not seen in non-allergic volunteers infected with RV16 and challenged with antigen, nor in allergic volunteers repetitively challenged with antigen but not infected with RV16, nor in RV16 infected allergic volunteers sham challenged with saline. We conclude that rhinovirus upper respiratory infection significantly augments immediate and late allergic responses in the airways of allergic individuals after local antigen challenge. These data suggest that one mechanism of increased asthma during a cold is an accentuation of allergic responses in the airway which may then contribute to bronchial inflammation.  相似文献   

9.
Rhinoviruses are the major trigger of acute asthma exacerbations and asthmatic subjects are more susceptible to these infections. To investigate the underlying mechanisms of this increased susceptibility, we examined virus replication and innate responses to rhinovirus (RV)-16 infection of primary bronchial epithelial cells from asthmatic and healthy control subjects.Viral RNA expression and late virus release into supernatant was increased 50- and 7-fold, respectively in asthmatic cells compared with healthy controls. Virus infection induced late cell lysis in asthmatic cells but not in normal cells. Examination of the early cellular response to infection revealed impairment of virus induced caspase 3/7 activity and of apoptotic responses in the asthmatic cultures. Inhibition of apoptosis in normal cultures resulted in enhanced viral yield, comparable to that seen in infected asthmatic cultures. Examination of early innate immune responses revealed profound impairment of virus-induced interferon-beta mRNA expression in asthmatic cultures and they produced >2.5 times less interferon-beta protein. In infected asthmatic cells, exogenous interferon-beta induced apoptosis and reduced virus replication, demonstrating a causal link between deficient interferon-beta, impaired apoptosis and increased virus replication. These data suggest a novel use for type I interferons in the treatment or prevention of virus-induced asthma exacerbations.  相似文献   

10.
It is still uncertain how viral respiratory infections cause acute exacerbations of bronchial asthma, although several mechanisms have been proposed. We studied the relationship between the airway narrowing and the inflammatory and bronchospastic factors in peripheral venous blood and urine, in 30 patients with asthma at the exacerbations caused by upper respiratory tract infections (URTIs). Acute exacerbations caused decreases in peak expiratory flow rate (PEFR) in all 30 patients with asthma. Asthma exacerbations caused the rises in serum levels of interleukin-6, soluble intercellular adhesion molecule-1 and eosinophil cationic protein, concentrations of urinary leukotriene E4 and plasma histamine, compared with those in patients with asthma at a stable condition and those in 30 control subjects (p < 0.05). The values of PEFR at the exacerbations correlated with the levels of these factors. Treatment with oral glucocorticoids reversed the decreases in PEFR and the increases in these factors. At the onset of URTIs, rhinovirus and influenza type A virus were identified in 13 and 7 patients, respectively. Each of parainfluenza virus, adenovirus, and enterovirus was identified in one patient. These findings suggest that respiratory viral infections may cause acute asthma exacerbations via the production of mediators that induce inflammation and bronchospasm.  相似文献   

11.
Although viral upper respiratory infections (URIs) provoke wheezing in many asthma patients, the effect of these illnesses on the airway response to inhaled antigen is not established. The following study evaluated the effect of an experimental rhinovirus (RV) illness on airway reactivity and response to antigen in 10 adult ragweed allergic rhinitis patients. Preinfection studies included measurements of airway reactivity to histamine and ragweed antigen. Furthermore, the patients were also evaluated for late asthmatic reactions (LARs) to antigen (a 15% decrease in forced expiratory volume of the first second approximately 6 h after antigen challenge). 1 mo after baseline studies, the patients were intranasally inoculated with live RV16. All 10 patients were infected as evidenced by rhinovirus recovery in nasal washings and respiratory symptoms. Baseline FEV1 values were stable throughout the study. During the acute RV illness, there was a significant increase in airway reactivity to both histamine and ragweed antigen (P = 0.019 and 0.014, respectively). Before RV inoculation, only 1 of the 10 subjects had an LAR after antigen challenge. However, during the acute RV illness, 8 of 10 patients had an LAR (P less than 0.0085 compared with baseline); the development of LARs was independent of changes in airway reactivity and the intensity of the immediate response to antigen. Therefore, we found that not only does a RV respiratory tract illness enhance airway reactivity, but it also predisposes the allergic patient to develop LARs, which may be an important factor in virus-induced bronchial hyperresponsiveness.  相似文献   

12.
Paramyxoviral infections cause most of the acute lower respiratory tract illness in infants and young children and predispose to the development of chronic wheezing, but the relationship between these short- and long-term viral effects are uncertain. Here we show that a single paramyxoviral infection of mice (C57BL6/J strain) not only produces acute bronchiolitis, but also triggers a chronic response with airway hyperreactivity and goblet cell hyperplasia lasting at least a year after complete viral clearance. During the acute response to virus, same-strain ICAM-1-null mice are protected from airway inflammation and hyperreactivity despite similar viral infection rates, but the chronic response proceeds despite ICAM-1 deficiency. Neither response is influenced by IFN-gamma deficiency, but the chronic response is at least partially prevented by glucocorticoid treatment. In contrast to viral infection, allergen challenge caused only short-term expression of asthma phenotypes. Thus, paramyxoviruses cause both acute airway inflammation/hyperreactivity and chronic airway remodeling/hyperreactivity phenotypes (the latter by a hit-and-run strategy, since viral effects persist after clearance). These two phenotypes can be segregated by their dependence on the ICAM-1 gene and so depend on distinct controls that appear critical for the development of lifelong airway diseases such as asthma.  相似文献   

13.
The genetic variants of orosomucoid-like protein 3 (ORMDL3) gene are associated with highly significant increases in the number of human rhinovirus (HRV)-induced wheezing episodes in children. Recent investigations have been focused on the mechanisms of ORMDL3 in rhinovirus infection for asthma and asthma exacerbations. ORMDL3 not only regulates major human rhinovirus receptor intercellular adhesion molecule 1 expression, but also plays pivotal roles in viral infection through metabolisms of ceramide and sphingosine-1-phosphate, endoplasmic reticulum (ER) stress, ER-Golgi interface and glycolysis. Research on the roles of ORMDL3 in HRV infection will lead us to identify new biomarkers and novel therapeutic targets in childhood asthma and viral induced asthma exacerbations.  相似文献   

14.
The mechanisms of COPD exacerbation are complex. Respiratory viruses (in particular rhinovirus) and bacteria play a major role in the causative etiology of COPD exacerbations. In some patients, noninfective environmental factors may also be important. Data recently published from a large observational study identified a phenotype of patients more susceptible to frequent exacerbations. Many current therapeutic strategies can reduce exacerbation frequency. Future studies may target the frequent exacerbator phenotype, or those patients colonized with potential bacterial pathogens, for such therapies as long-term antibiotics, thus preventing exacerbations by decreasing bacterial load or preventing new strain acquisition in the stable state. Respiratory viral infections are also an important therapeutic target for COPD. Further work is required to develop new anti-inflammatory agents for exacerbation prevention, and novel acute treatments to improve outcomes at exacerbation.  相似文献   

15.
Introduction: Chlamydia pneumoniae is an obligatory human pathogen involved in lower and upper airway infections, including pneumonia, bronchitis. Asymptomatic C. pneumoniae carriage is also relatively common. The association of C. pneumoniae infections with the chronic obstructive pulmonary disease (COPD) course is unclear.

Objectives: The aim of the study was to investigate the association between chronic C. pneumoniae infection and clinical features of COPD, markers of inflammation and metabolic dysfunction.

Patients and methods: The study included 59 patients with stable COPD who had no, or had?≥2 acute exacerbations during last year. The level of IgA and IgG antibody against C. pneumoniae, IL-6, IL-8, resistin, insulin, adiponectin and acyl ghrelin was measured in serum by enzyme-linked immunosorbent assay (ELISA).

Results: No differences in clinical and functional data were observed between COPD patients without serological features of C. pneumoniae infection and chronic C. pneumoniae infection. The level of anti C. pneumoniae IgA significantly correlated with IL-8, IL-6, resistin concentration in group of frequent exacerbators. IgG level correlated negatively with acetyl ghrelin and body mass index (BMI) in patients without frequent exacerbations, in contrast to frequent COPD exacerbation group where significant correlations between IgG level and BMI was demonstrated. Serum IL-6 correlated positively with resistin and insulin and negatively with adiponectin in group of patients with serological features of chronic C. pneumoniae infection only.

Conclusions: Our study showed that chronic C. pneumoniae infection does not influence the clinical course of COPD in the both study groups. Chronic C. pneumoniae infections might be associated with a distinct COPD phenotype that affects metabolic dysfunction.  相似文献   

16.
17.
Viral respiratory infections are considered one of the triggers of exacerbations of asthma. In a model of virus-induced airway hyper-responsiveness (AHR), mice infected with human respiratory syncytial virus (RSV) were shown to develop AHR accompanied by lung eosinophilia. Inhibitors of cyclic nucleotide phosphodiesterase (PDE) have been shown to affect airway responsiveness and pulmonary allergic inflammation. In this study, we assessed the effects of type 4 PDE (PDE4) inhibitors on AHR following RSV infection and compared them with a PDE3 inhibitor. In mice infected by intranasal inoculation of RSV, treatment with the PDE4 inhibitor rolipram or Ro-20-1724 reduced both AHR and the eosinophil infiltration of the airways. In contrast, the PDE3 inhibitor, milrinone, did not influence airway responsiveness or eosinophilic inflammation. These results demonstrate that PDE4 inhibitors can modulate RSV-induced AHR and lung eosinophilia and indicate that they have a potential role in treating exacerbations of asthma triggered by viral infection.  相似文献   

18.
Oxidative stress and airway inflammation together form a vicious cycle, which is responsible for the disease progression in chronic pulmonary obstructive disease (COPD). The damaging effects of oxidative stress accumulate over the years, causing increased bronchial hyperresponsiveness and inflammation and destruction of airway epithelial cells and impairing the functions of antiproteases and surfactant. Although the lung expresses a number of antioxidants, cigarette smoking and recurrent infections associated with this disease overwhelm this protective mechanism. Studies of antioxidants in COPD have yielded conflicting results, probably due to the compartmentalization of these mediators, and because of the fact that the lung is a difficult organ to sample. Chronic exposure to oxidants upregulates the production of antioxidants, which become depleted during acute exacerbations. Future studies of the pathogenesis of COPD require a noninvasive yet accurate sampling procedure, of which exhaled breath condensate (EBC) is a good candidate. EBC samples the epithelial lining fluid, which contains the local oxidative stress markers in the lung. Oxidative stress markers such as hydrogen ions, hydrogen peroxide, 8‐isoprostanes, thiobarbituric acid reactive products, nitrosothiols, and nitrite/nitrate have been identified in EBC of COPD patients, whereas many other markers of the oxidative‐antioxidative balance have yet to be investigated.  相似文献   

19.
A respiratory infection in childhood has been implicated in one of the risk factors for COPD. The hypothesis that latent adenoviral infection is involved in the pathogenesis of COPD have been studied for 15 years. A DNA virus, adenovirus(Ad), early gene 1A (ElA gene) was identified in lung tissue of COPD. The E1A gene expression enhances the soluble intercellular adhesion molecule (ICAM) 1 expression and the recruitment of inflammatory cells into airways of COPD lungs. In vitro experiments, E1A gene transfected cells exhibited the enhanced inflammatory response to tobacco smoke. The excess production of ICAM-1, IL-8, and TGF- beta by lung epithelial cells transfected with the Ad E1A gene. Respiratory infections in childhood including Ad infection may be an important risk factor for the pathogenesis of COPD.  相似文献   

20.
目的 探讨病毒感染与慢性阻塞性肺疾病(COPD)的关系,及病毒感染对COPD患者Th1/Th2偏移状态的影响.方法 应用间接ELISA法时81例COPD急性加重期患者、25例稳定期患者和22例正常对照者的血清进行呼吸道合胞病毒(RSV)、单纯疱疹病毒-1型(HSV-1)、副流感病毒(PIV)、腺病毒(ADV)、巨细胞病毒(CMV)的特异性抗体IgM进行检测.同时测定外周血单个核细胞上清液中细胞因子INF-γ和IL-4水平.结果 急性加重期组IgM阳性28例(34.57%),稳定期组和对照组lgM阳性率均为0,差异有统计学意义(X2=12.16,P<0.01).急性加重期组INF-γ和IL-4分别为(242±43)ng/L和(42±9)ng/L,稳定期组分别为(198±32)ng/L和(56±11)ng/L,对照组分别为(90±18)ng/L和(141±24)ng/L,差异有统计学意义(F分别为26.03和114.69,P均<0.01).急性加重期IgM阳性组INF-γ和IL4分别为(278±54)ng/L和(39±8)ng/L,阴性组分别为(185±33)ng/L和(61±13)ng/L,差异有统计学意义(t值分别为2.65和2.82,P均<0.01).结论 病毒感染是COPD急性加重期的重要诱因,COPD患者存在向Th1极化的调控,且病毒感染加强了COPD患者的Th1优势.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号