首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 229 毫秒
1.
After mixing a methylbenzene 4 with “magic blue” solution in F113 (CClF2CCl2F) containing bis{perfluoro[1-(2-fluorosulfonyl)ethoxy]ethyl}nitroxide 2 and perfluoro-1-nitroso-1-[1-(2-fluorosulfonyl)ethoxy]ethane 3 at room temperature, benzylic H-atom of 4 could be selectively abstracted by 2, and benzyl radical 5 thus generated was immediately trapped by 3. Based on hyper-fine splitting constants (hfsc), the structure of the spin adducts perfluoro[1-(2-fluorosulfonyl)ethoxy]ethyl benzyl nitroxides 6 derived from seven methylbenzenes have been identified. The mechanism of the H-abstraction/spin trapping process is also discussed.  相似文献   

2.
New “Magic Blue” reagent, namely, the blue solution in F113 (CClF2CCl2F) containing H-abstracting agent bis[ω-fluorosulfonylperfluoroalkyl] nitroxide RFN(O)RF2 and ω-fluorosulfonylperfluoronitrosoalkane spin trap RFNO 3 both generated in the reaction of ω-fluorosulfonylperfluorodiacyl peroxide [FO2SCF2CF2OCF(CF3)CF2OCF(CF3)COO]21 with sodium nitrite in F113 (CClF2CCl2F) at room temperature, reacted with a series of p-substituted benzaldehydes 4 via regio-selective abstraction of the formyl hydrogen followed by spin trapping of the acyl radical intermediate 5, thus led to the formation of stable spin adducts ω-fluorosulfonylperfluoroalkyl p-substituted benzoyl nitroxides 6. The correlation analyses of aN values of nitroxides 6 with various substituent constants disclose that the polar effects are the major factors varying the spin density on the nitroxyl-nitrogen while the effect through spin-delocalization is felt slightly.  相似文献   

3.
The trifluorovinyl phosphine complexes [Cp*RhCl2{PR3−x(CFCF2)x}] (1x = 1, a R = Ph, b Pri, c Et; 2x = 2, R = Ph) have been prepared by treatment of [Cp*RhCl(μ-Cl)]2 with the relevant phosphine. The salt [Cp*RhCl(CNBut){PPh2(CFCF2)}]BF4, 3, was prepared by addition of ButNC to 1a in the presence of NaBF4. The salt [Cp*RhCl{κP,κS-(CF2CF)PPh(C6H4SMe-2)}]BF4 was prepared as a mixture of cis (5a) and trans (5b) isomers by treatment of [Cp*RhCl(μ-Cl)]2 with the phosphine-thioether (CF2CF)PPh(C6H4SMe-2), 4, in the presence of NaBF4. The structures of 1a-c and 5a have been determined by single-crystal X-ray diffraction. Intramolecular dehydrofluorinative carbon-carbon coupling between pentamethylcyclopentadienyl and trifluorovinylphosphine ligands of 1a, 3 and 5 has been attempted. No reaction was observed on treatment of the neutral complex [Cp*RhCl2{PPh2(CFCF2)}], 1a, with proton sponge, however, 5a underwent dehydrofluorinative coupling to yield [{η5,κP,κS-(C5Me4CH2CFCF)PPh(C6H4SMe-2)}RhCl]BF4, 6. Other reactions, in particular addition of HF across the vinyl bonds of 5, occurred leading to a mixture of products. The cation of 3 underwent similar reactions.  相似文献   

4.
Bimetallic alkylidene complexes of tungsten (R′O)2(ArN)WCH-SiR2-CHW(NAr)(OR′)2 (R = Me (1), Ph (2)) and (R′O)2(ArN)WCH-SiMe2SiMe2-CHW(NAr)(OR′)2 (3) (Ar = ; R′ = CMe2CF3) have been prepared by the reactions of divinyl silicon reagents R2Si(CHCH2)2 with known alkylidene compounds R′′-CHMo(NAr)(OR′)2. (R′′ = But, PhMe2C) Complexes 1-3 were structurally characterized. Ring opening metathesis polymerization (ROMP) of cyclooctene using compounds 1-3 as initiators led to the formation of high molecular weight polyoctenamers with predominant trans-units content in the case of 1 and 3 and predominant cis-units content in the case of 2.  相似文献   

5.
A series of 2,2′-bipyridines featuring fluorinated alkyl groups [(CH2)3(CF2)xCF3: x = 0, (1); 5, (2); 7, (3); 9 (4)] appended in the 4 and 4′ positions have been prepared. 1-4 were characterized by spectroscopy and physical methods including partition coefficient (biphase: perfluoromethylcyclohexane/toluene) and cyclic voltammetry (THF). Ab-initio calculations of vertical ionization potentials (VIPs) for 1-4 confirm the insulating role of the methylene spacers as the electrochemical reduction potentials of 1-4 are almost identical to that of 2,2′-bipyridine. Calculations for (CH2)nCF3 derivatives (n = 0-10) describe a limit for impact of the CF3 group through 9-10 methylenes. From both physical and theoretical data fluorinated alkyl groups of the formula (CH2)3(CF2)xCF3 [x = 0-9] are inductively equivalent to a hydrogen substituent when appended to the bipyridine moiety.  相似文献   

6.
Reaction of quadricyclane (1) with fluoroolefins of different structure results in stereoselective formation of polyfluorinated exo-tricyclo[4.2.1.02,5]non-7-enes. The reaction of a mixture of trans/cis CF3CFCFCF3 with 1 is stereoselective and the resulting cycloadducts 7a, b preserve the original alkene stereochemistry. The relative rate constants of cycloaddition of a series of fluoroolefins to 1 under pseudo first-order conditions measured by kinetic NMR at 109 °C provide a kinetic scale of reactivities of the fluoroolefins in this reaction.These relative rate constants correlate well with the number of fluoroalkyl groups connected to the double bond, reaching a maximum for the tri-substituted olefin: CF3CFCF2:CF3CFCFCF3:(CF3)2CC(CF3)2:(CF3)2CCFC2F5 = 1:1.2-1.9:4:138.  相似文献   

7.
The N-methylquinolinium tetrafluoroborate (NMQ+)-photosensitized oxidation of tert-alkyl phenyl sulfides 1a-c (1a, tert-alkyl=tert-butyl; 1b, tert-alkyl=2-phenyl-2-propyl; 1c, tert-alkyl=1,1-diphenylethyl) and benzyl phenyl sulfide (2) were investigated in CH3CN by nanosecond laser flash photolysis (LFP) and steady-state irradiation either under nitrogen or in the presence of O2. By laser irradiation, the formation of sulfide radical cations 1a+-c+ in the monomeric form (λmax=520 nm) and of 2+ in both the monomeric (λmax=520 nm) and dimeric form (λmax=780 nm) were observed within the laser pulse. In both cases, the radical cations decayed by second-order kinetics without any apparent formation of transients attributable to C-S bond rupture. In line with these results, very small amounts of photoproducts were obtained under nitrogen thus suggesting that the sulfide radical cations mainly undergo a back electron transfer process with the reduced N-methylquinolinium (NMQ). A different situation was found in the presence of O2 since steady-state photolysis produced substantial amounts of C-S bond cleavage products (alcohols, alkenes, and ketones from 1a-c and benzaldehyde from 2), in contrast with LFP experiments. Formation of products was, however, significantly reduced in the presence of benzoquinone, a trap for O2 generated by NMQ and O2. For the tert-alkyl phenyl sulfides, 1a-c, these results have been interpreted by suggesting that C-S bond cleavage products in the presence of oxygen mostly derive from the decomposition of a thiadioxirane 6 formed by the reaction of the sulfide radical cation with O2. In this cleavage a sulfinate and a carbocation formed. The former is oxidized to sulfonate, whereas the carbocation can react with adventitious water to form the alcohol (and the alkene therefrom) and with O2 to produce the ketone. For 2 (a sulfide with α-CH bonds) probably a different mechanism holds, benzaldehyde coming from the α-phenylthio carbon radical formed from deprotonation by O2 of 2n+.  相似文献   

8.
Min Zhang  Yun Liu  Hong-Wen Hu 《Tetrahedron》2006,62(24):5663-5674
Irradiation of 1,2,4,5-tetracyanobenzene (TCNB) with styrene derivatives 1-4, respectively, leads to a photochemical olefin dimerization-aromatic substitution reaction to give the corresponding (2,4,5-tricyanophenyl)tetralin derivative (8, 12, 16, 17, and 20) as the main product. Further irradiation of the primary product with alkene results in substitution of the meta-CN group by another phenyltetralinyl to give the corresponding 4:1 (alkene-TCNB) product. According to the effect of the codonor (biphenyl) and salt (magnesium perchlorate) on reaction rate, the result of photoinduced reactions of TCNB with tetralin (6) and 1-phenyltetralin (7) and analysis of the known kinetic data for relevant processes in the cyanoarene-alkene reactions, the mechanism for the formation of the olefin dimerization-aromatic substitution products (such as 8) is proposed to involve radical pair combination of the alkene cyclodimer radical (the corresponding 4-phenyl-1-tetralinyl radical) with TCNB followed by expulsion of a CN. Photoreactions of TCNB with the alkene photocyclodimer (1-phenyltetralin) may also make minor contributions. Photoinduced reaction of TCNB with 1-phenylcyclohexene (5) takes a different pathway from 1-4 to afford the 1:1 (5-TCNB) primary product 21 by deprotonation of 5+ and radical pair combination with TCNB followed by elimination of HCN.  相似文献   

9.
DFT calculations have been carried out for 2-, 3- and 4-methoxybenzyl alcohol radical cations (1+, 3+ and 4+, respectively) and the α-methyl derivatives 2+ and 5+ using the UB3LYP/6-31G(d) method. The theoretical results have been compared with the experimental rate constants for deprotonation of 1+-5+ under acidic and basic conditions. In acidic solution, the decay of 1+-5+ proceeds by cleavage of the C-H bond, while in the presence of OH all the radical cations undergo deprotonation from the α-OH group. This pH-dependent change in mechanism has been interpreted qualitatively in terms of simple frontier molecular orbital theory. The OH induced α-O-H deprotonation is consistent with a charge controlled reaction, whereas the C-H deprotonation, observed when the base is H2O, appears to be affected by frontier orbital interactions.  相似文献   

10.
The preparation of several ruthenium complexes containing cyanocarbon anions is reported. Deprotonation (KOBut) of [Ru(NCCH2CN)(PPh3)2Cp]PF6 (1) gives Ru{NCCH(CN)}(PPh3)2Cp (2), which adds a second [Ru(PPh3)2Cp]+ unit to give [{Ru(PPh3)2Cp}2(μ-NCCHCN)]+ (3). Attempted deprotonation of the latter to give the μ-NCCCN complex was unsuccessful. Similar chemistry with tricyanomethanide anion gives Ru{NCC(CN)2}(PPh3)2Cp (4) and [{Ru(PPh3)2Cp}2{μ-NCC(CN)CN}]PF6 (5), and with pentacyanopropenide, Ru{NCC(CN)C(CN)C(CN)2}(PPh3)2Cp (6) and [{Ru(PPh3)2Cp}2{μ-NCC(CN)C(CN)C(CN)CN}]PF6 (7). The Ru(dppe)Cp* analogues of 6 and 7 (8 and 9) were also prepared. Thermolysis of 6 (refluxing toluene, 12 h) results in loss of PPh3 and formation of the binuclear cyclic complex {Ru(PPh3)Cp[μ-NC{C(CN)C(CN)2}CN]}2 (10). The solid-state structures of 2-4 and 8-10 have been determined and the nature of the isomers shown to be present in solutions of the binuclear cations 7 and 9 by NMR studies has been probed using Hartree-Fock and density functional theory.  相似文献   

11.
γ-Irradiation of 2,2-diphenyl-1-methylenecyclopropane (3) in a degassed 2-methyltetrahydrofuran glassy matrix at 77 K gave an intense UV/vis absorption band with λab at 496 nm. This result and calculations based on density functional theory for its radical anion 3 and the corresponding trimethylenemethane radical anion (2) strongly suggest that single electron reduction of 3 followed by ready ring opening affords 2, whose molecular geometry is largely twisted (θ = 45.5°), and the negative charge and spin are localized mainly in the diphenyl methyl and allyl moieties, respectively.  相似文献   

12.
The compounds Ru(CCCCFc)(PP)Cp [PP = dppe (1), dppm (2)], have been obtained from reactions between RuCl(PP)Cp and FcCCCCSiMe3 in the presence of KF (1) or HCCCCFc and K[PF6] (2), both with added dbu. The dppe complex reacts with Co2(CO)6(L2) [L2 = (CO)2, dppm] to give 3, 4 in which the Co2(CO)4(L2) group is attached to the outer CC triple bond. The PPh3 analogue of 3 (5) has also been characterised. In contrast, tetracyanoethene reacts to give two isomeric complexes 6 and 7, in which the cyano-olefin has added to either CC triple bond. The reaction of RuCl(dppe)Cp with HCCCCFc, carried out in a thf/NEt3 mixture in the presence of Na[BPh4], gave [Ru{CCC(NEt3)CHFc}(dppe)Cp]BPh4 (8), probably formed by addition of the amine to an (unobserved) intermediate butatrienylidene [Ru(CCCCHFc)(dppe)Cp]+. The reaction of I2 with 8 proceeds via an unusual migration of the alkynyl group to the Cp ring to give [RuI(dppe){η-C5H4CCC(NEt3)CHFc}]I3 (9). Single-crystal X-ray structural determinations of 1, 2 and 4-9 are reported.  相似文献   

13.
A γ-irradiation of 2,2-diphenyl-1-methylenecyclopropane (3) in a degassed n-butyl chloride glassy matrix at 77 K produced an intense UV/vis absorption band with λab at 432 nm. This result and calculations based on density functional theory for its radical cation 3+ and the corresponding trimethylenemethane radical cation (2+) strongly suggest that a single electron oxidation of 3 followed by ready ring opening affords 2+, whose molecular geometry is largely twisted (θ = 44.0°), and the positive charge and spin are localized mainly in the diphenyl methyl and allyl moieties, respectively.  相似文献   

14.
Insertion of hexafluorobutyne into the Pt-H bond of the heterobimetallic complexes [(OC)3Fe{Si(OMe)3}(μ-Ph2PXPPh2)Pt(H)(PPh3)] (1a X = CH2; 1b X = NH) yields the σ-alkenyl complexes [(OC)3Fe{μ-Si(OMe)2(OMe)}(μ-Ph2PXPPh2)Pt{C(CF3)C(H)CF3}] (3a X = CH2; 3b X = NH). This insertion reaction is accompanied by dissociation of the platinum bound PPh3 ligand and saturation of the vacant coordination site by a dative μ−η2-Si-O → Pt interaction. Addition of the Pt-H bond of 1a across the triple bond of 3,3,3-trifluoropropyne affords in a regiospecific manner [(OC)3Fe{μ-Si(OMe)2(OMe)}(μ-dppm)Pt{C(CF3)CH2}] (2) having the trifluoromethyl substituent on the α-carbon. Addition of RNC to 3 affords the isocyanide adducts [(OC)3Fe{Si(OMe)3}(μ-Ph2PXPPh2)Pt(CNR){C(CF3)C(H)CF3}] (4a R = t-Bu, X = CH2; 4b R = 2,6-xylyl, X = CH2; 4c R = 2,6-xylyl, X = NH). In dichloromethane solution 3a is gradually transformed into the C4F6-bridged compound [(OC)3Fe(μ-dppm)(μ-CF3CCCF3)Pt(CO)] 5. The Pt-bound carbonyl ligand of 5 is displaced by xylylisocyanide or trimethylphosphite affording the derivatives [(OC)3Fe(μ-dppm)(μ-CF3CCCF3)Pt(CNxylyl)] 6 and [(OC)3Fe(μ-dppm)(μ-CF3CCCF3)Pt{P(OMe)3}] 7. The molecular structures of 4a, 5 and 6 have been determined by X-ray diffraction studies.  相似文献   

15.
The reaction of 1,1,4,4-tetrakis[bis(trimethylsilyl)methyl]-1,4-diisopropyltetrasila-2-yne 1 with secondary or primary amines produced amino-substituted disilenes R(R2′N)SiSiHR 2a-d (R = SiiPr[CH(SiMe3)2]2, R2′NEt2N (2a), (CH2CH2)2N (2b), tBu(H)N (2c), and Ph2N (2d)). Spectroscopic and X-ray crystallographic analyses of 2 showed that 2a-c have a nearly coplanar arrangement of the SiSi double bond and the amino group, giving π-conjugation between the SiSi double bond and the lone pair on the nitrogen atom, whereas 2d has a nearly perpendicular arrangement precluding such conjugation. Theoretical calculations indicate that π-conjugation between the π-orbital of the SiSi double bond and the lone pair on the nitrogen atom is markedly influenced by the torsional angle between the SiSi double-bond plane and the amino-group plane.  相似文献   

16.
Reaction of Pd(AcO)2 with the Schiff base ligands 2-Br-4,5-(OCH2O)C6H2C(H)N(Cy) (a) and 4,5-(OCH2CH2)C6H3C(H)N(Cy) (b) leads to the cyclometallated compounds [Pd{2-Br-4,5-(OCH2O)C6HC(H)N(Cy)-C6,N}(μ-O2CMe)]2 (1a) and [Pd{4,5-(OCH2CH2)C6H2C(H)N(Cy)-C6,N}(μ-O2CMe)]2 (1b), respectively, via C-H activation. Treatment of a with Pd2(dba)3 gave [Pd{4,5-(OCH2O)C6H2C(H)N(Cy)-C2,N}(μ-Br)]2 (6a), via C-Br activation. The metathesis reaction of 1a and 1b with aqueous sodium chloride gave the corresponding cyclopalladated dimers with bridging chloride ligands, 2a and 2b, respectively. Treatment of the halogen-bridged compounds with tertiary tri- and diphosphines in the appropriate molar ratio gave the mono and dinuclear compounds 3a-5a, 7a-9a and 3b-5b. The structure of compounds 3a, 4a, 5a, 8a, 2b, 3b and 5b has been determined by X-ray diffraction analysis.  相似文献   

17.
18.
A series of copper(I) and silver(I) carboxylates received from various ferrocenecarboxylic acids was synthesized and used in the preparation of heterooligometallic Ti-Cu(Ag)-Fe complexes. The silver(I) salts [FcCO2Ag] (2a) and [FcCHCHCO2Ag] (2b) (Fc = ferrocenyl, (η5-C5H4)Fe(η5-C5H5)) were obtained through deprotonation of the respective acids FcCO2H (1a) and FcCHCHCO2H (1b) with NEt3, followed by a reaction with [AgNO3]. The heterotrimetallic complexes {[Ti](μ-σ,π-CCSiMe3)2}AgO2CFc (4a) and {[Ti](μ-σ,π-CCSiMe3)2}AgO2CCHCHFc (4b), where [Ti] denotes the (η5-C5H4SiMe3)2Ti unit, were obtained from the reaction of 2a and 2b with the organometallic π-tweezer compound [Ti](CCSiMe3)2 (3). The related heterotrimetallic copper(I) complex {[Ti](μ-σ,π-CCSiMe3)2}CuO2CFc (9a) was prepared via two synthetic routes. First, salt 2a was reacted with [(η2-Me3SiCCSiMe3)CuBr]2 (10) to give the alkyne-stabilized copper(I) carboxylate [(η2-Me3SiCCSiMe3)(CuO2CFc)2]2 (11). Subsequent reaction of 11 with four equivalents of 3 afforded 9a. Alternatively, 9a and its analogues {[Ti](μ-σ,π-CCSiMe3)2}CuO2C-E-Fc (E = trans-CHCH (9b), CH2CH2 (9c)), were prepared from acidolysis of the Cu-CMe bond in {[Ti](μ-σ,π-CCSiMe3)2}CuMe (8) with acids 1a-1c. An analogous reaction between HO2CfcPPh2M(CO)5 (M = Cr (14a), Mo (14b), W (14c); fc = ferrocene-1,1′-diyl) and 8 at−30 °C gave the alkyne/ferrocene-bridged heterotetrametallic compounds {[Ti](μ-σ,π-CCSiMe3)2}CuO2CfcPPh2M(CO)5 (M = Cr (15a), Mo (15b), W (15c)). Reversing the reaction steps so that {[Ti](μ-σ,π-CCSiMe3)2}CuO2CfcPPh2 (12) was prepared first and then reacted with M(CO)5(thf) (M = Cr (13a), Mo (13b), W (13a)) gave complicated reaction mixtures from which pure 15a-15c could not be isolated. The solid-state structures of 5, 7, 9a, and 11 have been corroborated by single-crystal X-ray structural studies and the electrochemical behavior of acids 1a-1c and of complexes 4a, 4b and 9a-9c was studied by cyclic voltammetry.  相似文献   

19.
Heterocyclic carbene complexes are accessible from π-donor-substituted allenylidene complexes, [(CO)5CrCCC(NMe2)Ph] (1) and [(CO)5CrCCC(O-endo-Bornyl)OEt] (4), and various dinucleophiles by 1,2,3-diheterocyclization. The reaction of 1 with 1,2-dimethylhydrazine gives the 1,2-dimethylpyrazolylidene complex (2) in high yield in addition to small amounts of the α,β-unsaturated carbene complex [(CO)5CrC(NMe2)-C(H)C(NMe2)Ph] (3). The analogous reaction of 4 with 1,2-dimethylhydrazine affords the 1,2-dimethylpyrazolylidene complex (5) and, via displacement of the Cγ-bound ethoxy substituent, the hydrazinoallenylidene complex [(CO)5CrCCC(O-endo-Bornyl){NMe-N(H)Me}] (6). Treatment of 6 with catalytic amounts of acids induces cyclization to 5. On addition of 1,1-dimethylhydrazine to 1 the zwitterionic pyrazolium-5-ylidene complex (7) is formed. The reaction of 1 with 1,2-diaminocyclohexane affords a octahydro-benzo[1,4]diazepinylidene complex (10) and, via intermolecular substitution, a binuclear bisallenylidene complex (11). Thiazepinylidene complexes (12-14), containing 7-membered N/S-heterocyclic carbene ligands, are formed highly selectively in the reaction of 1 with 2-aminoethanethiol or related cysteine derivatives by a substitution/cyclization sequence. The analogous reaction of 1 with homocysteine methylester yields a thiazocanylidene complex (15). All new heterocyclic carbene ligands are strong donors exhibiting σ-donor/π-acceptor ratios similar to those of the known imidazolylidene complexes. On photolysis of 2 and 12 in the presence of triphenylphosphine, the corresponding cis-carbene tetracarbonyl triphenylphosphine complexes (16 and 17) are formed. The solid state structure of complexes 2, 7, 14, 15, and 16 is established by X-ray structural analysis.  相似文献   

20.
An alternative synthesis of (±)-4-ethynyl[2.2]paracyclophane (PCPCCH) (5) and 4,16-diethynyl[2.2]paracyclophane (6) via the Corey-Fuchs reaction has been developed. The olefinic intermediate 4-dibromovinyl[2.2]paracyclophane (3) has been isolated and structurally characterized. The racemic terminal alkyne 5 was employed as starting material for assembling of a luminescent extended π-conjugated system containing a thiophene unit and for a catalytic bis-silylation reaction yielding the olefinic dithioether Z-PhSCH2Me2SiC(H)C(PCP)SiMe2CH2SPh (9). The dimetallatetrahedran [Co2(CO)6(μ-η2-PCP-CCH)] (10) has been prepared and its crystal structure determined by an X-ray diffraction analysis. Alkyne 5 has also been used for the preparation of the Pt(0) complex [Pt(PPh3)2(PCPCCH)] (11) and the heterodinuclear dimetallacyclopentenone [(OC)2Fe{μC(O)C(PCP)C(H)}(μ-dppm)Pt(PPh3)] (12). The synthesis and reactivity of 4-isocyano[2.2]paracyclophane (15) towards heterobimetallic iron-platinum and palladium-platinum complexes is also presented. Opening of the dative iron → platinum bond of [(OC)4Fe(μ-dppm)PtCl2] (16) occurred upon addition of 15 to a CH2Cl2 solution of 16 leading to [(OC)4Fe{μ-dppm}PtCl2(CNPCP)] (17). Treatment of [ClPd(μ-dppm)2PtCl] (18) with isocyanide 15 in a 1:1 ratio affords the A-frame compound [ClPd(μ-dppm)2(μ-CNPCP)PtCl] (19), resulting from formal insertion of 15 into the Pd-Pt bond. Addition of 2 equiv. of 15-18 leads to the ionic A-frame compound [ClPd(μ-dppm)2(μ-CNPCP)Pt(CNPCP)]Cl (20).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号