首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Analytical letters》2012,45(10):2179-2189
Abstract

In the presence of Pb(Ac)2, the silicon dioxide nanoparticle containing rhodamine 6G (R‐SiO2) can emit strong and stable solid substrate‐room temperature phosphorescence (SS‐RTP) signal on the surface of acetyl cellulose membrane (ACM) at λexem=482/649 nm. It was found in the research that specific affinity adsorption reaction between triticum vulgare lectin (WGA) (which was labeled with luminescent silicon dioxide nanoparticle) and alkaline phosphatase (AP) can be carried out on the surface of ACM. The product of the reaction can emit stronger SS‐RTP signal. A new method of SS‐RTP for the determination of AP was established, based on an affinity adsorption reaction between AP and WGA labeled with nanoparticles containing rhodanime 6G luminescent molecules. The linear range of this WGA‐AP‐WGA‐R‐SiO2 method is 1.00–360.00 ag AP spot?1 (sample volume: 0.40 µL spot?1, corresponding concentration range: 2.50–900.00 fg mL?1). The regression equation of working curve is ΔIp=16.24+0.8856 mAP (ag spot?1), r=0.9993. Detection limit of this method calculated by 3Sb/k is 0.14 ag spot?1. After 11‐fold replicate measurements, RSD are 3.9% and 3.1% for the systems containing 1.00 and 360.00 ag AP spot?1, respectively. Compared with R‐SiO2‐WGA‐AP method (detection limit: 0.45 ag spot?1, corresponding concentration range: 2.00–320.00 ag spot?1), the sensitivity of WGA‐AP‐WGA‐R‐SiO2 method was obviously improved and the linear range was wider. The sensitivity, accuracy, and precision of this method are high. It has been successfully applied to determine AP in human serum.  相似文献   

2.
A Triton X-100-4.0G-D (4.0G-D refers to a 4.0-generation dendrimer) was brought forward as a new phosphorescence labeling reagent. Two types of specific affinity adsorption (AA) reactions (direct method and sandwich method) were carried out between the labeling product of Triton X-100-4:0G-D-Wheat germ agglutinin (WGA) and alkaline phosphatase (ALP), the product of AA reaction preserved the good characteristics of room temperature phosphorescence (RTP) of 4.0G-D and △Ip of the product was proportional to the content of ALP. According to the fact stated above, a new method for the determination of trace ALP by affinity adsorption solid substrate-room temperature phosphorimetry (AA-SS-RTP) was established on the basis of WGA labeled with the Triton X-100-4.0G-D. The detection limits were 0.20 ag·spot^-1 (corresponding concentration: 5.0×10^-16 g·mL^-1, namely 5.0×10^-18 mol·L^-1) for a direct method and 0.14 ag·spot^-1 (corresponding concentration: 3.5×10^-16 g·mL^-1, namely 3.5×10^-18 mol·L^-1) for a sandwich method, respectively. For their high sensitivity, good repeatability and high accuracy, the direct method and sandwich method have been successfully appfied to determine the content of ALP in human serum, and the results were coincided with the clinical detection results of the enzyme-linked immunosorbent assay method by the Zhangzhou Hospital of Traditional Chinese Medicine. Meanwhile, the mechanism for the determination of trace ALP by AA-SS-RTP was discussed.  相似文献   

3.
The ? COOH in fluorescein isothiocyanate (FITC) reacted with ? NH? in piperidine (P) to form FITC‐P on the center of indentation of polyamide membrane (PAM) when drying for 2 min at (92±1)°C. Then, the FITC‐P diffused outward from the indentation center and formed the round SOR‐P‐FITC (containing the FITC‐P self‐ordered rings). Thus, multi‐FITC accumulated on SOR‐P‐FITC, leading to the enhancement of RTP signal on bio‐target, whose Ip increased 2.0 times compared with non‐generated SOR. When bovine serum albumin (BSA) was added to the center of SOR‐P‐FITC, ? NCS of FITC in SOR‐P‐FITC reacted with ? NH2 of BSA to form SOR‐P‐FITC‐BSA, which caused the RTP signal of FITC to enhance sharply. The ΔIp of the system was 3.4 times higher than that without β‐CD and 4.0 times higher than that without SOR‐P‐FITC formed. Its ΔIp was linear to the content of BSA. Therefore, a new solid substrate‐room temperature phosphorimetry (SS‐RTP) for the determination of trace protein was established using SOR‐P‐FITC as a phosphorescent probe. Under the optimum condition, the linear range of this method was 0.040–16.0 ag·spot?1 with a detection limit (LD) of 8.5 zg·spot?1 (0.40 µL sample solution per spot, the corresponding concentration was 2.1×10?17 g·mL?1), and the regression equation of working curve was ΔIp=3.848+4.240mBSA (ag·spot‐1), n=6, correlation coefficient (r) was 0.9993. This method with high sensitivity had been applied to determining the content of trace protein in the water samples, and the results coincided well with those obtained with pyrocatechol violet‐Mo(VI) method (P.V.M.M.). At the same time, the mechanism of SS‐RTP using SOR‐P‐FITC as a phosphorescent probe (SOR‐P‐FITC‐SS‐RTP) was discussed.  相似文献   

4.
A new solid substrate-room temperature phosphorescence (SS-RTP) quenching method for the determination of trace As(V) has been developed, based on the facts that 9-hydroxy-2,3,4,9-tetrahydro-1,10-anthraquinone (R) can emit intense and stable SS-RTP on solid substrate, and α,α'-dipyridyl can activate As(V) catalysis of the reaction of H2O2 oxidizing R to non-phosphorescence compound R', which can cause the sharp quenching of SS-RTP. Under the optimum condition, the relationship between the ΔIp of the emitting intensity and 1.60-160 fg·spot^-1 As(V) (corresponding concentration: 0.0040-0.40 ng·mL^-1, sample volume: 0.4 μL·spot^-1) conformed to Beer' law. The regression equation of working curve can be expressed as ΔIp= 20.46+0.5492CAs(v) fig·spot^-1) (r= 0.9995, n = 6). The limit detection (LD) is 0.27 fg·spot^-1 [As(V) corresponding concentration: 6.8 × 10^-13 g·mL^-1, n=11]. The samples containing 0.0040 and 0.40 ng·mL^-1 As(V) were repeatedly determined for 11 times. RSD are 3.0% and 2.7% respectively. The SS-RTP mechanism was also discussed. R was synthesized in this paper. Meanwhile, the structure was determined by NMR, IR, mass spectra and elemental analysis.  相似文献   

5.
Under the conditions of reacting at 100°C for 8 min and irradiating with the infrared light for 15 min, methylene blue (MEB) could emit weak room temperature phosphorescence (RTP) on the cellulose acetate membrane (CAM) using Pb2+ as the ion perturber in the NH3‐NH4Cl (pH=9.80) solution. MEB was oxidized by H2O2, which caused the RTP of the system to enhance. Cu2+ could catalyze the reaction of H2O2 oxidizing MEB, which caused the RTP of the system to enhance sharply. The ΔIp (Ip0?Ip, the Ip0 and Ip were RTP intensity of the blank reagent and RTP intensity of the test reagent, respectively) of the catalytic system was 133.6, which was 4.1 times larger than that without infrared light irradiation (33.1). Its ΔIp was proportional to the content of Cu2+. Thus, a new catalytic solid substrate room temperature phosphorimetry (SSRTP) for the determination of trace copper has been established. The limit of quantization (LOQ) of this method was 0.12 ag·spot?1 (sample volume: 0.40 µL·spot?1, corresponding concentration: 3.0×10?16 g·mL?1), showing high sensitivity. This method not only has been successfully applied to the determination of trace copper in the tobacco, tea and human serum, but also could predict human diseases. The catalytic reaction was first order reaction, whose activation energy (E) was 18.17 kJ·mol?1 and rate constant (k) was 3.4×10?4 s?1. At the same time, the mechanism of catalytic SSRTP for the determination of trace copper was discussed.  相似文献   

6.
Liu JM  Liu ZB  Zhu GH  Li XL  Huang XM  Li FM  Shi XM  Zeng LQ 《Talanta》2008,74(4):625-631
In this paper, 3.5-generation polyamidoamine dendrimers (3.5G-D)-porphyrin (P) dual luminescence molecule (3.5G-D-P) was developed as a new phosphorescence-labeling reagent. Meanwhile, the room temperature phosphorescence (RTP) characteristics of 3.5G-D-P and its product of labeling triticum vulgaris lectin (WGA) on the surface of polyamide membrane (PAM) were studied. Results showed that in the presence of heavy atom perturber LiAc, 3.5G-D and P of 3.5G-D-P molecule could emit strong and stable RTP on the PAM. And the Tween-80 would spike thoroughly the phosphorescence signal of 3.5G-D and P; moreover, specific affinity absorption (AA) reaction between the products (Tween-80-3.5G-D-P-WGA) of WGA labeled with Tween-80-3.5G-D-P and glucose (G) was carried out. The products of the AA reaction could keep good RTP characteristics of 3.5G-D and P dual luminescence molecule, and the DeltaI(p) was linear correlation to the content of G. According to the facts above, a new method of affinity adsorption solid substrate-room temperature phosphorimetry (AA-SS-RTP) for the determination of trace G was established, basing on WGA labeled with Tween-80-3.5G-D-P dual luminescence molecule. The detection limit of this method was 0.13fgspot(-1) (1.7x10(-12)moll(-1), 3.5G-D) and 0.14fgspot(-1) (2.2x10(-12)moll(-1), P). Determination of G in human serum using excitation/emission wavelength of either 3.5G-D or P, the result was coincided with enzyme-linked immunosorbent assay (ELISA). Not only the sensitivity and accuracy of this method were higher, but also the flexibility of AA-SS-RTP was obviously improved and the applicability was wider.  相似文献   

7.
In this study, a silicic acid and tetra isopropyl ortho titanate ceramic precursor and a metallocene polyethylene‐octene elastomer (POE) or acrylic acid grafted metallocene polyethylene‐octene elastomer (POE‐g‐AA) were used in the preparation of hybrids (POE/SiO2? TiO2 and POE‐g‐AA/SiO2? TiO2) using an in situ sol‐gel process, with a view to identifying a hybrid with improved thermal and mechanical properties. Hybrids were characterized using Fourier transform infrared spectroscopy, 29Si solid‐state nuclear magnetic resonance (NMR), X‐ray diffraction, differential scanning calorimetry, thermogravimetry analysis, dynamic mechanical thermal analysis, and Instron mechanical testing. Properties of the POE‐g‐AA/SiO2? TiO2 hybrid were superior to those of the POE/SiO2? TiO2 hybrid. This was because the carboxylic acid groups of acrylic acid acted as coordination sites for the silica‐titania phase to allow the formation of stronger chemical bonds. 29Si solid‐state NMR showed that Si atoms coordinated around SiO4 units were predominantly Q3 and Q4. The 10 wt % SiO2? TiO2 hybrids gave the maximum values of tensile strength and glass transition temperature in both POE/SiO2? TiO2 and POE‐g‐AA/SiO2? TiO2. It is proposed that above this wt %, excess SiO2? TiO2 particles caused separation between the organic and inorganic phases. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1690–1701, 2005  相似文献   

8.
SiO2‐PAN nanoparticles has been synthesized by reacting silica nanoparticles with 3‐aminopropyltriethoxysilane, formaldehyde and 1‐(2‐pyridylazo)‐2‐naphthol and characterized by FT‐IR and SEM which were used as new sorbent for the preconcentration of trace amount of Pb2+ from various samples. Conditions of the analysis such as preconcentration factor, effect of pH, sample volume, shaking time, elution conditions and effects of interfering ions for the recovery of analyte were investigated. The adsorption capacity of the nanometer SiO2‐PAN was found to be 168.34 μmol/g at optimum pH and the detection limit (3δ) was 0.63 µg/L. The extractant showed rapid kinetic sorption. The adsorption equilibrium of Pb2+ on the nanometer SiO2‐PAN was achieved within 15 min. Adsorbed Pb2+ was easily eluted with 6 mL of 4 mol·L?1 hydrochloric acid. The maximum preconcentration factor was 50. The method was applied to determine trace amounts of Pb2+ in different samples (water and food samples).  相似文献   

9.
TG-DTG technique and Harcourt-Esson integrated equation were used to study the dehydration process of zinc phosphate tetrahydrate α-Zn3(PO4)2·4H2O nanoparticle and its thermal decomposition kinetics. The results show that there are three stages of dehydration between 300 and 800 K during the thermal decomposition of α-Zn3(PO4)2·4H2O nanoparticle. The first stage is controlled by chemical reaction with an activation energy of 69.48 kJ·mol^-1 and a pre-exponential factor of 1.77×10^6 s^-1. The second is controlled by nucleation and growth with an activation energy of 78.74 kJ·mol^-1 and a pre-exponential factor of 5.86×10^9 s^-1. The third is controlled by nucleation and growth with an activation energy of 141.5 kJ·mol^-1 and a pre-exponential factor of 1.01×10^12 s^-1. The kinetic compensative effects not only exist in Arrhenius equation but also in Harcourt-Esson equation. Activation energy E is dependent on both the decomposition fraction α and temperature T.  相似文献   

10.
A novel biosensor by electrochemically codeposited Pt nanoclusters and DNA film was constructed and applied to detection of dopamine (DA) and uric acid (UA) in the presence of high concentration ascorbic acid (AA). Scanning electron microscopy and X‐ray photoelectron spectroscopy were used for characterization. This electrode was successfully used to resolve the overlapping voltammetric response of DA, UA and AA into three well‐defined peaks with a large anodic peak difference (ΔEpa) of about 184 mV for DA and 324 mV for UA. The catalytic peak current obtained from differential pulse voltammetry was linearly dependent on the DA concentration from 1.1× 10?7 to 3.8×10?5 mol·L?1 with a detection limit of 3.6×10?8 mol·L?1 (S/N=3) and on the UA concentration from 3.0×10?7 to 5.7×10?5 mol·L?1 with a detection limit of 1.0×10?7 mol·L?1 with coexistence of 1.0×10?3 mol·L?1 AA. The modified electrode shows good sensitivity and selectivity.  相似文献   

11.

Dynamic interfacial tension (DIT) and interface adsorption kinetics at the n‐decane/water interface of 3‐dodecyloxy‐2‐hydroxypropyl trimethyl ammonium chloride (R12TAC) were measured using spinning drop method. The effects of RnTAC concentration and temperature on DIT have been investigated, the reason of the change of DIT with time has been discussed. The effective diffusion coefficient, D a, and the adsorption barrier, ?a, have been obtained with extended Word‐Tordai equation. The results show that the higher the concentration of surfactants is, and the smaller will be the DIT and the lower will be the curve of the DIT, and the R12TAC solutions follow a mixed diffusion‐activation adsorption mechanism in this investigation. With increase of concentration in bulk solution of R12TAC from 8×10?4 mol · dm?3 to 4×10?3 mol · dm?3, D a decreases from 2.02×10?10 m?2 · s?1 to 1.4×10?11 m?2 · s?1 and ? a increases from 2.60 kJ · mol?1 to 9.32 kJ · mol?1, while with increase of temperature from 30°C to 50°C, D a increases from 2.02×10?10 m?2 · s?1 to 5.86×10?10 m?2 · s?1 and εa decreases from 2.60 kJ · mol?1 to 0.73 kJ · mol?1. This indicates that the diffusion tendency becomes weak with increase strength of the interaction between surfactant molecules and that the thermo‐motion of molecules favors interface adsorption.  相似文献   

12.
The Crystal Structures of [Cu2Cl2(AA · H+)2](NO3)2 and [AA · H+]Picr? (AA · H+ = Allylammonium; Picr? = Picrat) By an alternating current electro synthesis the crystal-line π-complex [Cu2Cl2(AA · H+)2](NO3)2 has been obtained from CuCl2 · 2H2O, allylamine (AA), and HNO3 in ethanolic solution. X-ray structure analysis revealed that the compound crystallized in the monoclinic system, space group P21/a, a = 7.229(3), b = 7.824(3), c = 26.098(6) Å, γ = 94.46(5)°, Z = 4, R = 0.025 for 2 023 reflections. The crystal structure is built up of CunCln chains which are connected by π-bonding bidentate AA · H+ …? ON(O)O …? H+ · AA units. For comparision with the above complex the structure of [AA · H+]Picr? (Picr? = picrate anion) is also reported.  相似文献   

13.
Titanium dioxide nanoparticle/gold nanoparticle/carbon nanotube (TiO2/Au/CNT) nanocomposites were synthesized, and then characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy dispersive X-ray spectroscopy (EDX). A TiO2/Au/CNT nanocomposite-modified glassy carbon (GC) electrode was prepared using the drop coating method and was investigated using electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), differential pulse voltammetry (DPV), and amperometric current–time response (I-T). The modified material is redox-active. The nonenzymatically detected amount of ascorbic acid (AA) on the TiO2/Au/CNT electrode showed a linear relationship with the AA concentration, for concentrations from 0.01 to 0.08 μM; the sensitivity was 117,776.36 μA?·?cm?2?·?(mM)?1, and the detection limit was 0.01 μM (S/N?=?3). The results indicated that the TiO2/Au/CNT nanocomposite-modified GC electrode exhibited high electrocatalytic activity toward AA. This paper describes materials consisting of a network of TiO2, Au, and MWCNTs, and the investigation of their synergistic effects in the detection of AA.  相似文献   

14.
LIU  Xueping  ZHOU  Zhenhua  ZHANG  Liangliang  TAN  Zhongyang  SHEN  Guoli  YU  Ruqin 《中国化学》2009,27(10):1855-1859
A simple and rapid colorimetric approach for the determination of adenosine has been developed via target inducing aptamer structure switching, thus leading to Au colloidal solution aggregation. In the absence of the analytes, the aptamer/gold nanoparticle (Au NP) solution remained well dispersed under a given high ionic strength condition in that the random‐coil aptamer was readily wrapped on the surface of the Au NPs, which resulted in the enhancement of the repulsive force between the nanoparticles due to the high negative charge density of DNA molecules. While in the presence of adenosine, target‐aptamer complexes were formed and the conformation of the aptamer was changed to a folded structure which disfavored its adsorption on the Au NP surface, thus leading to the reduction of the negative charge density on each Au NP and then the reduced degree of electrostatic repulsion between Au nanoparticles. As a result, the aggregation of the Au colloidal solution occurred. The changes of the absorption spectrum could be easily monitored by a UV‐Vis spectrophotometer. A linear correlation exists between the ratio of the absorbance of the system at 522 to 700 nm (A522 nm/A700 nm) and the concentration of adenosine between 100 nmol·L?1 and 10 µmol·L?1, with a detection limit of 51.5 nmol·L?1.  相似文献   

15.
Silicic acid produced from sodium metasilicate hydrate and metallocene polyethylene–octene elastomer (POE) were chosen as the ceramic precursor and the continuous phase, respectively, for preparation of new hybrids by an in situ sol–gel process. To obtain a better hybrid, the acrylic acid‐grafted polyethylene–octene elastomer (POE‐g‐AA) prepared in our laboratory and used as the continuous phase was also investigated. Characterizations of POE/SiO2 and POE‐g‐AA/SiO2 composites were performed by Fourier transform infrared spectroscopy, 29Si solid‐state nuclear magnetic resonance (NMR) spectrometry, X‐ray diffractometry, differential scanning calorimetry, thermogravimetry analysis, and an Instron mechanical tester. The POE‐g‐AA/SiO2 hybrid could give the positive effect on the properties of POE/SiO2 hybrid because the carboxylic acid groups of acrylic acid should act as coordination sites for the silica phase to form chemical bonds. The result of 29Si solid‐state NMR spectra showed that Si atom coordination around SiO4 units is predominantly Q3 and Q4. Also, the POE‐g‐AA/SiO2 hybrid with 15 wt % SiO2 gave the maximum values of tensile strength and glass‐transition temperature because excess particles might cause the separation between the organic and inorganic phases when the silica content was beyond this point. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 351–359, 2003  相似文献   

16.
A novel core-shell luminol-based SiO2 nanoparticle While these nanoparticles were used as electrogenerated was synthesized by two step micro-emulsion method. chemiluminescence (ECL) reagent, the electrochemical (EC) reaction as well as the subsequent chemiluminescence (CL) reaction not only could be separated spatially, but also presented high efficiency for analytical purpose. In this case, the core-shell luminol-based SiO2 nanoparticles offered more potential to avoid the contradiction between the EC and the CL reaction conditions. A new ECL method based on the nanoparticle was developed, and isoniazid was selected as a model analyte to illustrate the characteristics of this new ECL method. Under the selected conditions, the proposed ECL response to isoniazid concentration was linear in the range of 1.0 ×10^-10 to 1.0 × 10^-6 g/mL with 2 × 10^-11g/mL detection limit.  相似文献   

17.
In order to investigate the gas‐phase mechanisms of the acid catalyzed degradation of ascorbic acid (AA) to furan, we undertook a mass spectrometric (ESI/TQ/MS) and theoretical investigation at the B3LYP/6‐31 + G(d,p) level of theory. The gaseous reactant species, the protonated AA, [C6H8O6]H+, were generated by electrospray ionization of a 10?3 M H2O/CH3OH (1 : 1) AA solution. In order to structurally characterize the gaseous [C6H8O6]H+ ionic reactants, we estimated the proton affinity and the gas‐phase basicity of AA by the extended Cooks's kinetic method and by computational methods at the B3LYP/6‐31 + G(d,p) level of theory. As expected, computational results identify the carbonyl oxygen atom (O2) of AA as the preferred protonation site. From the experimental proton affinity of 875.0 ± 12 kJ mol?1 and protonation entropy ΔSp 108.9 ± 2 J mol?1 K?1, a gas‐phase basicity value of AA of 842.5 ± 12 kJ mol?1 at 298 K was obtained, which is in agreement with the value issuing from quantum mechanical computations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
A series of amphiphilic silica/fluoropolymer nanoparticles of SiO2g‐P(PEGMA)‐b‐P(12FMA) were prepared by silica surface‐initiating atom transfer radical polymerization (SI‐ATRP) of poly(ethylene glycol) methyl ether methacrylate (PEGMA) and poly dodecafluoroheptyl methacrylate (P12FMA). Their amphiphilic behavior, lower critical solution temperature (LCST), and surface properties as protein‐resistance coatings were characterized. The introduction of hydrophobic P(12FMA) block leads SiO2‐g‐P(PEGMA)‐b‐P(12FMA) to form individual spherical nanoparticles (~150 nm in water and ~170 nm in THF solution) as P(PEGMA)‐b‐P(12FMA) shell grafted on SiO2 core (~130 nm), to gain obvious lower LCST at 36–52 °C and higher thermostability at 290–320 °C than SiO2‐g‐P(PEGMA) (LCST = 78–90 °C, Td = 220 °C). The water‐casted SiO2‐g‐P(PEGMA)‐b‐P(12FMA) films obtain much rougher surface (125.3–178.4 nm) than THF‐casted films (11.5–16.9 nm) and all SiO2‐g‐P(PEGMA) films (26.8–31.3 nm). Therefore, the water‐casted surfaces exhibit obvious higher water adsorption amount (Δf = ?494 ~ ?426 Hz) and harder adsorbed layer (viscoelasticity of ΔDf = ?0.28 ~ ?0.36 × 10?6/Hz) than SiO2‐g‐P(PEGMA) films, but present loser adsorbed layer than THF‐casted films (ΔDf = ?0.29 ~ ?0.63 × 10?6/Hz). While, the introduction of P(12FMA) segments does not show obviously reduce in the protein‐repelling adsorption of SiO2‐g‐P(PEGMA)‐b‐P(12FMA) films (△f = ?15.7 ~ ?22.3 Hz) compared with SiO2‐g‐P(PEGMA) films (△f = ?8.3 ~ ?11.3 Hz) and no obvious influence on water adsorption of ancient stone. Therefore, SiO2‐g‐P(PEGMA)‐b‐P(12FMA) is suggested to be used as protein‐resistance coatings. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 381–393  相似文献   

19.
Although quantum dot (QD)‐based room temperature phosphorescence (RTP) probes are promising for practical applications in complex matrixes such as environmental, food and biological samples, current QD‐based‐RTP probes are not only quite limited but also exclusively based on the RTP quenching mechanism. Here we report an ascorbic acid (AA) induced phosphorescence enhancement of sodium tripolyphosphate‐capped Mn‐doped ZnS QDs, and its application for turn‐on RTP detection. The chelating ability allows AA to extract the Mn and Zn from the surface of the QDs and to generate more holes which are subsequently trapped by Mn2+, while the reducing property permits AA to reduce Mn3+ to Mn2+ in the excited state, thereby enhancing the excitation and orange emission of the QDs. The enhanced RTP intensity of the QDs increases linearly with the concentration of AA in the range of 0.05–0.8 μM . Thus, a QD‐based RTP probe for AA is developed. The proposed QD‐based turn‐on RTP probe avoids tedious sample pretreatment, and offers good sensitivity and selectivity for AA in the presence of the main relevant metal ions and other molecules in biological fluids. The limit of detection (3s) of the developed method is 9 nM AA, and the relative standard deviation is 4.8 % for 11 replicate detections of 0.1 μM AA. The developed method is successfully applied to the analysis of real samples of human urine and plasma for AA with quantitative recoveries from 96 to 105 %.  相似文献   

20.
梁爱惠  王素梅  蒋治良 《中国化学》2008,26(8):1417-1423
用粒径为10 nm的金纳米微粒标记羊抗人免疫球蛋白M(IgM),制备了IgM的免疫纳米金共振散射光谱探针。在pH4.49的KH2PO4-Na2HPO4缓冲溶液及PEG存在下,金标羊抗人IgM与IgM发生特异性结合生成胶体金免疫复合物,离心分离,获得未反应的金标抗上层清液。以此纳米金标抗作为催化剂,在pH 1.93的盐酸-柠檬酸钠缓冲溶液,催化NH2OH·HCl还原吸附在免疫纳米金表面的金络离子物种(AuCl4-)生成粒径更大的金纳米微粒,导致580 nm 处金纳米微粒的共振散射强度急剧增大。结果表明,随着IgM浓度增大,离心上层液中金标抗降低,I 580 nm线性降低,其△I580 nm与IgM浓度在0.06~4.80 ng· ml-1范围内呈良好的线性关系,其回归方程为ΔI580 nm=14.5cIgM + 1.8,检出限为0.03 ng·ml-1。本法具有灵敏、快速和较高的特异性,用于定量分析人血清中IgM,结果满意。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号