首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Riffle‐pool sequences are a common feature of gravel‐bed rivers. However, mechanisms of their generation and maintenance are still not fully understood. In this study a monitoring approach is employed that focuses on analysing cross‐sectional and longitudinal channel geometry of a large floodplain river (Vereinigte Mulde, Sachsen‐Anhalt, Germany) with a high temporal and spatial resolution, in order to conclude from stage‐dependant morphometric changes to riffle and pool maintaining processes. In accordance with previous authors, pool cross‐sections of the Mulde River are narrow and riffle cross‐sections are wide suggesting that they should rather be addressed as two general types of channel cross‐sections than solely as bedforms. At high flows, riffles and pools in the study reaches changed in length and height but not in position. Pools were scoured and riffles aggraded, a development which was reversed during receding flows below the threshold of 0·4Qbf (40% bankfull discharge). An index for the longitudinal amplitude of riffle‐pool sequences, the bed undulation intensity or bedform amplitude, is introduced and proved to be highly significant as a form parameter, its first derivative as a process parameter. The process of pool scour and riffle fill is addressed as bedform maintenance or bedform accentuation. It is indicated by increasing longitudinal bed amplitudes. According to the observed dynamics of bed amplitudes, maintenance of riffle‐pool sequences lags behind discharge peaks. Maximum bed amplitudes may be reached with a delay of several days after peak discharges. Increasing bed undulation intensity is interpreted to indicate bed mobility. Post‐flood decrease of the bed undulation intensity indicates a retrograde phase when transport from pools to riffles has ceased and bed mobility is restricted to riffle tails and heads of pools. This type of transport behaviour is referred to as disconnected mobility. The comparison of two river reaches, one with undisturbed sediment supply, the other with sediment deficit, suggests that high bed undulation intensity values at low flows indicate sediment deficit and potentially channel degrading conditions. It is more generally hypothesized that channel bed undulations constitute a major component of form roughness and that increased bed amplitudes are an important feature of channel bed adjustment to sediment deficit be it temporally during late floods or permanently due to a supply limitation of bedload. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
The study of bedload transport processes is constrained by an inability to monitor the mass, volume and grain size distribution of sediment in transport at high temporal frequencies. Building upon a previously published design, we have integrated a high‐resolution (1392 × 1024 pixels) video camera with a light table to continuously capture images of 2–181 mm material exiting a flume. The images are continuously recorded at a rate of 15 to 20 frames per second and are post‐processed using LabView(?) software, yielding continuous grain‐size‐specific transport information on a per second basis. The video capture rate is sufficient to record multiple images of each grain leaving the flume so that particle velocities can be measured automatically. No manual image processing is required. After calibration the method is accurate and precise for sediment in the 2 mm through to 45 mm grain size classes compared with other means of measuring bedload. Based on a set of validation samples, no statistically significant difference existed between the D10, D16, D25, D50, D75, D84, D90 and D95 determined by sieving captured samples and the Di values determined with the system. On average the system overpredicted transport by 4 per cent (n = 206, SD = 42%). This error can be corrected easily by simply weighing the mass of sediment that leaves the flume. The technology is relatively inexpensive and provides high‐resolution data on coarse sediment transport out of a flume. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
5.
Pebble clusters are reported widely as characteristic of gravel river beds and are known to influence the initial entrainment of bedload. A field assessment suggests that their distribution is not ubiquitous, favouring channel bars, but also reveals a tendency towards a preferred stream wise spacing. A series of laboratory flume experiments shows that flow resistance rises to, and falls from, a peak value as the longitudinal spacing of pebble clusters decreases, in a manner similar to that shown by others for strip roughness, isolated blocks, and simulated ripples and dunes. The experiments also reveal a strong inverse relationship between bedload flux rates and the flow resistance induced by the concentration of pebble clusters. It is concluded that pebble cluster spacing tends towards an equilibrium that is regulated by a feedback process involving sediment transport rates and that the spatial concentration of these microforms will adjust to the point where they induce maximum flow resistance.  相似文献   

6.
7.
The flow magnitude and timing from hydroelectric dams in the Snake River Basin of the Pacific north‐western US is managed in part for the benefit of salmon. The objective of this research was to evaluate the effects of Hells Canyon Dam discharge operations on hydrologic exchange flows between the river and riverbed in Snake River fall Chinook salmon spawning areas. Interactions between river water and pore water within the upper 1 m of the riverbed were quantified through the use of self‐contained temperature and water level data loggers suspended inside of piezometers. The data were recorded at 20 min intervals over a period of 200 days when the mean daily discharge was 218–605 m3 s?1, with hourly stage changes as large as 1·9 m. Differences in head pressure between the river and riverbed were small, often within ± 2 cm. Measured temperature gradients in the riverbed indicated significant interactions between the surface and subsurface water. At the majority of sites, neither hydraulic nor temperature gradients were significantly affected by either short‐ or long‐term changes in discharge operations from Hells Canyon Dam. Only 2 of 14 study sites exhibited acute flux reversals between the river and riverbed resulting from short‐term, large magnitude changes in discharge. The findings suggest that local scale measurements may not be wholly explanatory of the hydrological exchange between the river and riverbed. The processes controlling surface water exchange at the study sites are likely to be bedform‐induced advective pumping, turbulence at the riverbed surface, and large‐scale hydraulic gradients along the longitudinal profile of the riverbed. By incorporating the knowledge of hydrological exchange processes into water management planning, regional agencies will be better prepared to manage the limited water resources among competing priorities that include salmon recovery, flood control, irrigation supply, hydropower production, and recreation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
While clay and silt matrices of gravel‐bed rivers have received attention from ecologists concerned variously with the deteriorating environments of benthic and hyporheic organisms, their impact on sediment entrainment and transport has been explored less. A recent increase of such a matrix in the bed of Nahal Eshtemoa, an ephemeral river of the northern Negev, has more than doubled the boundary shear stress needed to initiate bedload, from 7 N m‐2* = 0.027) during the flash floods of 1991–2001 to 15 N m‐2* = 0.059) during those of 2008–2009. The relation between bedload flux and boundary shear stress continues to be well‐defined, but it is displaced. The matrix now contains a significant amount of silt and clay size material. The reasons for the increased entrainment threshold of bedload are explored. Large‐scale laser scanning of the dry bed reveals a reduction in grain‐scale morphological roughness, while artificial in situ tests of matrix integrity indicate considerable cohesion. The implications for adopting bed material sampling strategies that account for matrix development are assessed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
Permeability of a streambed is an important factor regulating nutrient and oxygen availability for aquatic biota. In order to investigate the relationship, an accurate permeability should be measured. However, it is difficult to measure permeability in a coarse gravel bed using a conventional permeability test. Moreover, turbulent flow may occur in coarse bed material, and then deviations from Darcy's law do occur. Thus, permeability calculated following Darcy's law may be overestimated under turbulent flow conditions and should be corrected. The packer test can be used in highly permeable gravel beds. We developed a field method applicable to a gravel bed using the packer test and derived an equation adopting a law of turbulent flow to study the problems under any type of flow condition. The accuracy of the equation was examined using a laboratory flume with a gravel bed. The results suggested that permeability calculated from Hvorslev's equation is overestimated for turbulent flow. In contrast, our equation, developed here, could evaluate permeability accurately under any type of flow condition. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
11.
Channel bifurcation is a key element in braided rivers, determining the water and sediment distribution and hence controlling the morphological evolution. Recent theoretical and experimental findings, as well as field observations, showed that bifurcations in gravel‐bed braided rivers are often asymmetrical and highly unstable. In this paper field data are presented on a bifurcation in the Tagliamento River, northeast Italy. The planform configuration of the bifurcation and its temporal evolution was monitored by an automatic digital camera during a series of seven floods with different magnitudes. This remote sensing technique allowed a high temporal resolution (pictures were acquired every hour) that was proved to be essential in a highly dynamic system as the one considered here. Digitized maps of the channels provided information on the location of the bifurcation, the width of the anabranches, the angle between them, along with the occurrence and migration of sediment bars. Data were acquired at two different water levels, giving the possibility to compare low and high flow conditions. The monitored bifurcation is largely unstable and shows sudden changes in the water distribution, mainly driven by the bar migrating in the upstream channel and entering the distributaries. A relationship between width asymmetry and flood magnitude was observed, confirming previous analyses. Moreover, recent theoretical findings were applied, in order to test the possibility to estimate general trends in bifurcation evolution. The analysis pointed out the relevance of a correct assessment of the characteristic temporal scales, as the bifurcation evolves on a timescale similar to that of bar migration and flood duration. Understanding the interactions between these processes is therefore crucial in order to increase the ability to model and predict the morphological evolution of a braided network. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
This paper uses numerical simulation of flood inundation based on a coupled one‐dimensional–two‐dimensional treatment to explore the impacts upon flood extent of both long‐term climate changes, predicted to the 2050s and 2080s, and short‐term river channel changes in response to sediment delivery, for a temperate upland gravel‐bed river. Results show that 16 months of measured in‐channel sedimentation in an upland gravel‐bed river cause about half of the increase in inundation extent that was simulated to arise from climate change. Consideration of the joint impacts of climate change and sedimentation emphasized the non‐linear nature of system response, and the possibly severe and synergistic effects that come from combined direct effects of climate change and sediment delivery. Such effects are likely to be exacerbated further as a result of the impacts of climate change upon coarse sediment delivery. In generic terms, these processes are commonly overlooked in flood risk mapping exercises and are likely to be important in any river system where there are high rates of sediment delivery and long‐term transfer of sediment to floodplain storage (i.e. alluviation involving active channel aggradation and migration). Similarly, attempts to reduce channel migration through river bank stabilization are likely to exacerbate this process as without bank erosion, channel capacity cannot be maintained. Finally, many flood risk mapping studies rely upon calibration based upon combining contemporary bed surveys with historical flood outlines, and this will lead to underestimation of the magnitude and frequency of floodplain inundation in an aggrading system for a flood of a given magnitude. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
Unsteady bedload transport was measured in two c. 5 m wide anabranches of a gravel‐bed braided stream draining the Haut Glacier d'Arolla, Switzerland, during the 1998 and 1999 melt seasons. Bedload was directly sampled using 152 mm square Helley–Smith type samplers deployed from a portable measuring bridge, and independent transport rate estimates for the coarser size fractions were obtained from the dispersion of magnetically tagged tracer pebbles. Bedload transport time series show pulsing behaviour under both marginal (1998) and partial (1999) transport regimes. There are generally weak correlations between transport rates and shear stresses determined from velocity data recorded at the measuring bridge. Characteristic parameters of the bedload grain‐size distributions (D50, D84) are weakly correlated with transport rates. Analysis of full bedload grain‐size distributions reveals greater structure, with a tendency for transport to become less size selective at higher transport rates. The bedload time series show autoregressive behaviour but are dif?cult to distinguish by this method. State–space plots, and associated measures of time‐series separation, reveal the structure of the time series more clearly. The measured pulses have distinctly different time‐series characteristics from those modelled using a one‐dimensional sediment routing model in which bed shear stress and grain size are varied randomly. These results suggest a mechanism of pulse generation based on irregular low‐amplitude bedforms, that may be generated in‐channel or may represent the advection of material supplied by bank erosion events. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
The presence of ?ne sediment in river gravels is widely recognized as being detrimental to salmonid habitat quality. In order to facilitate quanti?cation of sand presence at larger scales, this paper presents an application of image processing allowing for rapid and accurate assessments of super?cial sand presence in dry exposed ?uvial gravels. Images for the process are acquired with a 35 mm SLR ?lm camera and then scanned with a desktop scanner. Texture‐based segmentation is then applied to differentiate between sand and clast areas. Results show that the method is accurate and therefore it offers an alternative to bulk sampling in cases where rapid assessments of sand presence are required. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
The assumption of the equilibrium state of gravel surfaces in flume experiments under feeding or recirculating conditions is generally justified by three equilibrium criteria based on sediment transport, slopes, and bed features. When these parameters become stable, an experiment is expected to reach equilibrium. This equilibrium state, however, is based on a one‐dimensional model, the Exner equation, which may not truly reflect the equilibrium state of the system considering the complex flow and sediment processes. In this paper, the evolutionary process of a gravel surface is investigated based on a large‐scale recirculating flume experiment. The performances of the three equilibrium criteria are evaluated first, and then the evolution of the bed morphology is studied. The key findings include the following: (1) the sediment transport rate, slopes of water and bed surfaces, and one‐dimensional morphological features reach equilibrium roughly simultaneously; (2) two‐dimensional morphology continually evolves after these characteristics reach equilibrium, which is confirmed by the characteristics of the sediment transport process; and (3) the results from a numerical simulation suggest that a much longer time is required to reach an equilibrium state. Our results suggest that sufficient experimental time is required to investigate the equilibrium morphological characteristics of gravel surfaces, which is much longer than the equilibrium time reflected by the one‐dimensional equilibrium criteria. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

16.
A 2D depth‐averaged model has been developed for simulating water flow, sediment transport and morphological changes in gravel‐bed rivers. The model was validated with a series of laboratory experiments and then applied to the Nove reach of the Brenta River (Northern Italy) to assess its bed material transport, interpret channel response to a series of intensive flood events (R.I. ≈ 10 years) and provide a possible evolutionary scenario for the medium term. The study reach is 1400 m long with a mean slope of 0.0039 m m?1. High‐resolution digital terrain models were produced combining LiDAR data with colour bathymetry techniques. Extensive field sedimentological surveys were also conducted for surface and subsurface material. Data were uploaded in the model and the passage of two consecutive high intensity floods was simulated. The model was run under several hypotheses of sediment supply: one considering substantial equilibrium between sediment input and transport capacity, and the others reducing the sediment supply. The sediment supply was then calibrated comparing channel morphological changes as observed in the field and calculated by the model. Annual bed material transport was assessed and compared with other techniques. Low‐frequency floods (R.I. ≈ 1.5 years) are expected to produce negligible changes in the channel while high floods may erode banks rather than further incising the channel bed. Location and distribution of erosion and deposition areas within the Nove reach were predicted with acceptable biases stemming from imperfections of the model and the specified initial, boundary and forcing conditions. A medium‐term evolutionary scenario simulation underlined the different response to and impact of a consecutive sequence of floods. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Bankfull discharge is identified as an important parameter for studying river morphology, sediment motion, flood dynamics and their ecological impacts. In practice, the determination of this discharge and its hydrological characteristics is not easy, and a choice has to be made between several existing methods. To evaluate the impact of the choice of methods, five bankfull elevation definitions and four hydrological characterizations (determination of duration and frequency of exceedance applied to instantaneous or mean daily data) were compared on 16 gravel‐bed river reaches located in France (the catchment sizes vary from 10 km2 to 1700 km2). The consistency of bankfull discharge estimated at reach scale and the hydraulic significance of the five elevation definitions were examined. The morphological definitions (Bank Inflection, Top of Bank) were found more relevant than the definitions based on a geometric criterion. The duration of exceedance was preferred to recurrence intervals (partial duration series approach) because it is not limited by the independency of flood events, especially for low discharges like those associated with the Bank Inflection definition. On average, the impacts of the choice of methods were very important for the bankfull discharge magnitude (factor of 1·6 between Bank Inflection and Top of Bank) and duration of exceedance or frequency (respectively a factor 1·8 and 1·9 between mean daily and instantaneous discharge data). The choice of one combination of methods rather than another can significantly modify the conclusions of a comparative analysis in terms of bankfull discharge magnitude and its hydrological characteristics, so that one must be cautious when comparing results from different studies that use different methods. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
Structured gravel river beds clearly exert a major influence on bed stability. Indexing structural stability by field measurements of bed strength neglects the processes operating to entrain and transport bed material in different parts of each structure. This study takes a morphological approach to interpreting the critical processes, using particle tracing to determine the movement of individual cluster particles over a range of flood event magnitudes and durations. The experiment was carried out on the River South Tyne, UK; it uses flow hydrographs measured nearby and also benefits from previous studies of historical development, channel morphology and sediment transport at the same site. More than 30 clusters were monitored over a seven‐month period during which clusters occupied 7–16 per cent of the bed. Threshold flows delimiting three apparently contrasting bed sediment process regimes for cluster particles are tentatively set at 100 m3 s?1 and 183 m3 s?1; durations of flow at these levels are critical for cluster development, rather than flow peak values. Wake particles are transported most easily. Flow straightening in the wandering channel planform reduces the stability of clusters, since mechanical strength is markedly reduced by this change of direction. The overall area covered by clusters between significant transport events varies little, implying a dynamic equilibrium condition. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
Single‐thread, gravel‐bed streams of moderate slope in the northern Negev are characterized by three channel units: bars exhibit steeper than average slopes and poorly sorted mixtures of small–medium cobbles and coarse–very coarse pebbles; flats are associated with more gentle slopes and well‐sorted medium–fine pebbles and granules; and transitional units have intermediate slopes and grain size. In general, all three units are planar, span the full channel width and have well‐defined boundaries. Bars and flats are more common than the transitional units and alternate downstream for distances of several hundred metres, forming sequences that are reminiscent of the riffle–pool structure commonly observed in humid‐temperate gravel‐bed rivers. A notable contrast is the absence of significant bed relief: bars lack crests and flats lack depressions. The relative lack of bed relief in bar–flat sequences is attributed to the high rate of sediment supply from the sparsely vegetated hillslopes which promotes the infilling of depressions and to the erosion of crests under conditions of intense transport. This reduction of bed relief lowers channel roughness, which in turn increases flow velocity and, therefore, the ability of the channel to transmit the large sediment loads it receives. Although our analyses pertain to a semi‐arid river system, the results have wider implications for understanding the adjustment of channel bedform to high sediment loads in other fluvial environments. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
When fine sediments are present in gravel streambeds (gravel‐framework beds), the gravel can be more easily removed from its original position, compared with gravel in a streambed without fine sediment but otherwise under the same hydraulic conditions. In this study, the effect of the presence of sand on the initiation of gravel motion in gravel riverbeds was investigated using flume experiments. The relationship between the critical Shields stress for gravel motion initiation and the fraction of sand in the bed was determined experimentally. The results can be summarized as follows. (1) When the fraction of sand in the bed is smaller than about 0.4, the critical Shields stress for the initiation of gravel motion decreases with increasing fraction of sand. The critical Shields stress increases, however, with increasing fraction of sand when it is larger than about 0.4. (2) The difference between the value of the critical Shields stress predicted by the Egiazaroff equation and the value obtained from the experimental data becomes maximum at about 0.4 of the fraction of sand. Here an empirical relation between the critical Shields stress and the fraction of sand is proposed so as to consider the effects of the ratio of the characteristic gravel size to the mean size of the bed material on the critical Shields stress. (3) Gravel in armored beds can be more easily mobilized by supplying sand as part of a sediment augmentation scheme. The sand fraction in the subsurface layer of the bed appears to reduce the friction angle of exposed particles. Sediment augmentation using sand has been recently demonstrated to be a viable alternative for mobilizing gravel for the restoration of gravel‐bed rivers downstream of dams. The quantitative evaluation obtained through the experiments reported here may be useful for the design of augmentation schemes. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号