首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article reports the effect of the mixing process on the electromagnetic interference (EMI) shielding effectiveness of nickel/acrylonitrile–butadiene–styrene (ABS) composites. Nickel in either powder or filament form was used as the filler material. It was mixed with ABS by two mixing processes: one was the Brabender‐mixing method, in which nickel was mixed in the polymer melt by a strong shear at high temperatures, and the other was a simple dry mixing method performed in a centrifugal ball mill. Our results showed that the dry‐mixing method could produce EMI shielding effectiveness of 36 dB at the 3 vol % nickel filaments level. In contrast, we need 20 vol % nickel powder to exhibit some shielding effectiveness for the Brabender method. After the nondestructive X‐ray examination and four‐point probe resistivity measurements, we concluded that better EMI shielding effectiveness could be achieved when the mixing method provided a state of uniformity on the macroscale, but not on the microscale. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 128–135, 2005  相似文献   

2.
The effects of hybrid fillers on the electrical conductivity and electromagnetic interference (EMI) shielding effectiveness (SE) of polyamide 6 (PA6)/polypropylene (PP) immiscible polymer blends were investigated. Carbon black (CB) and steam exploded sisal fiber (SF) were used as fillers. CB was coated on the surface of SF, and this was exploded by water steam to form carbon black modified sisal fiber (CBMSF). CB/SF/PA6/PP composites were prepared by melt compounding, and its electromagnetic SE was tested in low‐frequency and high‐frequency ranges. We observed that SF greatly contributed to the effective decrease in the percolation threshold of CB in the PA6/PP matrix and adsorbed carbon particles to form a conductive network. Furthermore, an appropriate CB/SF ratio was important for achieving the best shielding performance. The results indicate that CBMSF was suitable for use as electronic conductive fillers and the CB/SF/PA6/PP composites could be used for the purpose of EMI shielding. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42801.  相似文献   

3.
The addition of various particulate nano‐carbon (PNC) fillers to heat‐resistant poly(vinylidene fluoride) (PVDF) was carried out to prepare conductive composites for use in electromagnetic interference (EMI) shielding application. Three different PNC fillers, namely N472 (Vulcan XC‐72), N550 (Fast Extruding Furnace) and N774 (Semi‐Reinforcing Furnace), were used in various concentrations to prepare composite systems PVDF/N472, PVDF/N550 and PVDF/N774 by solution casting followed by a moulding technique. These PNC fillers have a particle size at the nanometre level, but they have an aggregating tendency; both these characteristics influence the properties of composites to which such fillers are added. The percolation threshold of the PVDF/PNC composites was theoretically determined using the sigmoidal Boltzmann model and classical theory and compared. Theoretical models were also used to predict composition‐dependent electrical conductivity. The electrical conductivity is correlated to that of EMI shielding effectiveness at ambient temperature. © 2019 Society of Chemical Industry  相似文献   

4.
Nanostructured carbon-based polymeric nanocomposites are gaining research interest because of their cost-effectiveness, lightweight, and robust electromagnetic interference (EMI) shielding performance. Till now, it is a great challenge to design and fabricate highly scalable, cost-effective nanocomposites with superior EMI shielding performance. Herein, highly scalable EMI shielding material with tunable absorbing behaviors comprising of low-budget ketjen black (K-CB) reinforced poly(methyl methacrylate) (PMMA) nanocomposites have been prepared using simple solvent assisted solution mixing technique followed by hot compression technique. The morphological investigation revealed the homogeneous distribution of K-CB and strong interfacial interaction in PMMA matrix, which validated the strong reinforcement and other intriguing properties of the nanocomposites. The PMMA nanocomposites showed a low percolation threshold (2.79 wt%) and excellent electrical conductivity due to the formation of 3D conductive network like architecture within the polymer matrix. Specifically, the 10 wt% K-CB nanocomposite possessed a superior EMI shielding performance of about 28 dB for X-band frequency range. Further, a huge change in EMI shielding performance of PMMA nanocomposites is observed with varying thickness. The brand new K-CB decorated PMMA nanocomposites are expected to open the door for next-generation cost-effective EMI shielding materials for academic and industrial applications.  相似文献   

5.
Waste poly(ethylene terephthalate) (PET) from thin bottles was blended with acrylonitrile–butadiene–styrene (ABS) copolymer in different proportions, up to 10 wt %. Styrene maleic anhydride (SMA) copolymer was used as a compatibilizer. The tensile strength and heat deflection temperature of the blend were higher than that of virgin ABS. Flexural modulus remained unaffected, although a slight decrease in impact property was observed. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 2593–2599, 2001  相似文献   

6.
Solid lubricants, that is, graphite flakes and poly(tetrafluoroethylene) powders, were incorporated with short carbon fibers into a poly(ether imide) matrix to improve the tribological performance. Wear tests were performed with a polymer pin against a mild steel counterpart at a constant sliding speed of 1 m/s under various temperatures and contact pressures. Composites filled with equilibrium contents of solid lubricants and short carbon fibers, that is, 10 vol % of each filler, exhibited the lowest wear rate and friction coefficient. The relatively lower concentration of solid lubricants adversely affected the wear resistance, whereas the friction coefficient did not vary significantly in comparison with the friction coefficient of the composites filled with only short carbon fibers. The improved tribological behavior was attributed to more continuous and effective friction films formed on the material pairs during sliding. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1428–1434, 2004  相似文献   

7.
The electrical conductivity and electromagnetic interference (EMI) shielding effectiveness of the composites of polypropylene/poly(lactic acid) (PP/PLA) (70/30, wt %) with single filler of multiwall carbon nanotube (CNT) or hybrid fillers of nickel‐coated carbon fiber (CF) and CNT were investigated. For the single filler composite, higher electrical conductivity was observed when the PP‐g‐maleic anhydride was added as a compatibilizer between the PP and PLA. For the composite of the PP/PLA (70/30)/CF (20 phr)/CNT (5 phr), the composite prepared by injection molding observed a higher EMI shielding effectiveness of 50.5 dB than the composite prepared by screw extrusion (32.3 dB), demonstrating an EMI shielding effectiveness increase of 49.8%. The higher values in EMI shielding effectiveness and electrical conductivity of the PP/PLA/CF (20 phr)/CNT (5 phr) composite seemed mainly because of the increased CF length when the composites were prepared using injection molding machine, compared with the composites prepared by screw extrusion. This result suggests that the fiber length of the conductive filler is an important factor in obtaining higher values of electrical conductivity and EMI shielding effectiveness of the PP/PLA/CF/CNT composites. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45222.  相似文献   

8.
Nanocomposites based on poly(styrene‐b‐ethylene‐ran‐butylene‐b‐styrene) (SEBS) and carbon nanotubes (CNTs) (SEBS/CNT) as well as SEBS grafted with maleic anhydride (SEBS‐MA)/CNT were successfully prepared for electromagnetic shielding applications. Both SEBS/CNT and SEBS‐MA/CNT nanocomposites were prepared by melt compounding and were post‐processed using two different techniques: tape extrusion and compression moulding. The different nanocomposites were characterized by Raman spectroscopy and rheological analysis. Their mechanical properties, electrical properties (10-2–105 Hz) and electromagnetic shielding effectiveness (8.2–12.4 GHz) were also evaluated. The results showed that the CNT loading amount, the presence of MA in the matrix and the shaping technique used strongly influence the final morphologies and properties of the nanocomposites. Whilst the nanocomposite containing 8 wt% CNTs prepared by compression moulding presented the highest electromagnetic shielding effectiveness (with a value of 56.73 dB, which corresponds to an attenuation of 99.9996% of the incident radiation), the nanocomposite containing 5 wt% CNTs prepared by tape extrusion presented the best balance between electromagnetic and mechanical properties and was a good candidate to be used as an efficient flexible electromagnetic interference shielding material. © 2018 Society of Chemical Industry  相似文献   

9.
IR and UV-absorption spectra, and the thermally stimulated currents of pure and Rhodamine-6G-doped poly(acrylonitrile–butadiene–styrene) (Rhdoped ABS) films were investigated. Structural characteristics could be specified from these techniques. Both IR and UV-absorption studies revealed a modification of the structure of ABS on blending with Rhodamine 6G: Rh molecules are partially dispersed in the ABS matrix and partially attached as side groups to the ABS backbone. Thermally stimulated depolarization current (TSDC) studies confirmed this result. The results revealed that incorporation of Rh 6G in ABS locks the dipole in the ABS matrix after electric poling. The TSDC spectra have been found, depending on the polarization temperature, to be characterized by three peaks. The phenomenon of the existence of these current maxima is discussed and analysed in terms of dipolar and ionic relaxations.  相似文献   

10.
As the material properties of acrylonitrile–butadiene–styrene copolymer (ABS) have an excessively wide margin for applications in automobile console boxes, ABS partly replaced with poly(l ‐lactic acid) (PLA) may be used for the same purpose with improved ecofriendliness if the corresponding deterioration of the material properties is acceptable through the choice of appropriate additives. ABS composites with 30 wt % renewable components (PLA and cellulose pulp) were prepared by melt compounding, and the material properties were examined as a function of the additive content. The changes in the mechanical properties of the ABS/PLA blends were examined after the addition of cellulose pulp and two clays [Cloisite 25A (C25A) and sodium montmorillonite] as well as these two clays treated with bis(3‐triethoxysilylpropyl)tetrasulfide (TESPT). The heat distortion temperatures of the composites were measured as a function of the content of the TESPT‐treated C25A. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40329.  相似文献   

11.
Advanced polymer composites containing organic–inorganic fillers are gaining increasing attention due to their multifunctional applications. In this work, poly(styrene‐butadiene‐styrene) (SBS) composites containing magnetite‐functionalized graphene (FG) were prepared by a dissolution ? dispersion ? precipitation solution method. Evidently, through morphology studies, amounts of FG were well distributed in the SBS matrix. Improvements in neat SBS properties with respect to FG loading in terms of thermal stability, creep recovery and mechanical properties are presented. As expected, the addition of FG improved the thermal stability and mechanical properties of the composites. The yield strength and Young's modulus of the SBS increased by 66% and 146% at 5 wt% filler loading which can be attributed to the reinforcing nature of FG. Similarly, an increase in the storage and loss modulus of the composites showed a reinforcement effect of the filler even at low concentration. The results also showed the significant role of FG in improving the creep and recovery performance of the SBS copolymer. Creep deformation decreased with filler loading but increased with temperature. © 2017 Society of Chemical Industry  相似文献   

12.
The mechanical and heat‐resistant properties of acrylonitrile–butadiene–styrene (ABS) binary and ternary blends were investigated. The relationship of compatibility and properties was discussed. The results show that poly(methyl methacrylate) (PMMA) and styrene–maleic anhydride (SMA) can improve the thermal properties of conventional ABS. The Izod impact property of ABS/PMMA blends increases significantly with the addition of PMMA, whereas that of ABS/SMA blends decreases significantly with the addition of SMA. Blends mixed with high‐viscosity PMMA are characterized by higher heat‐distortion temperature (HDT), and their heat resistance is similar to that of blends mixed with SMA. For high‐viscosity PMMA, from 10 to 20%, it is clear that blends appear at the brittle–ductile transition, which is related to the compatibility of the two phases. TEM micrographs show low‐content and high‐viscosity PMMA in large, abnormally shaped forms in the matrix. Compatibility between PMMA and ABS is dependent on both the amount and the viscosity of PMMA. When the amount of high‐viscosity PMMA varied from 10 to 20 wt %, the morphology of the ABS binary blends varied from poor to satisfactory compatibility. As the viscosity of PMMA decreases, the critical amount of PMMA needed for the compatibility of the two phases also decreases. SMA, as a compatibilizer, improved the interfacial adhesiveness of ABS and PMMA, which results in PMMA having good dispersion in the matrix. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2652–2660, 2002  相似文献   

13.
Long‐fiber pellets were made by an in situ pultrusion process. Fiber‐reinforced composites were prepared by an injection‐molding process and an extrusion/injection‐molding method with pellets, respectively. SEM observations showed that the strong interface was maintained during the injection process for low shearing forces, although polymer adhesion to the fiber surface was completely delaminated in the process of extrusion/injection molding for very high shearing forces. Enhanced adhesion of composites promoted substantial improvement of mechanical properties compared to those with poor adhesion. However, the enhanced adhesion between the fiber and the matrix also sacrificed the impact resistance properties. Longer fibers substantially enhanced the properties of composites. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2478–2483, 2004  相似文献   

14.
In this article, we report on the preparation and characterization of novel poly(vinyl chloride) (PVC)–carbon fiber (CF) composites. We achieved the reinforcement of PVC matrices with different plasticizer contents using unidirectional continuous CFs by applying a warm press and a cylinder press for the preparation of the PVC–CF composites. We achieved considerable reinforcement of PVC even at a relatively low CF content; for example, the maximum stress (σmax) of the PVC–CF composite at a 3% CF content was found to be 1.5–2 times higher than that of the PVC matrix. There were great differences among the Young's modulus values of the pure PVC and PVC–CF composites matrices. The absolute Young's modulus values were in the range 1100–1300 MPa at a 3% CF content; these values were almost independent of the plasticizer content. In addition, we found a linear relationship between σmax and the CF content and also recognized a linear variation of the Young's modulus with the CF content. The adhesion of CF to the PVC matrix was strong in each case, as concluded from the strain–stress curves and the light microscopy and scanning electron microscopy investigations. The mechanical properties of the PVC–CF composites with randomly oriented short (10 mm) fibers were also investigated. At low deformations, the stiffness of the composites improved with increasing CF content. Dynamic mechanical analysis (DMA) was used to determine the glass‐transition temperature (Tg) of the PVC–CF composites. The high increase in the Young's modulus entailed only a mild Tg increase. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

15.
Tensile yield measurements were made on blends of poly(vinyl chloride) (PVC) with a methyl methacrylate-butadiene-styrene impact modifier (MBS) covering a blend range of 0 to 20 wt % MBS, a temperature range of ?50 to 25°C, and a strain rate range of 10?3 to 10° s?1. Increasing MBS level in PVC reduces the tensile yield stress. The tensile yield stress variation with temperature and strain rate at constant MBS level was represented in terms of the Ree-Eyring-Roetling rate model. This model represents the experimental data within experimental error. The tensile yield parameters were also determined by assuming that stress concentrations exist around the modifier equatorial plane. Estimates of these stress concentrations were made and are discussed in terms of Goodier's model for spherical inclusions.  相似文献   

16.
To develop high‐quality electromagnetic interference (EMI) shielding materials, the effect of plasma pretreatment with various gases prior to Cu plating was investigated. Plasma treatment increased the surface roughness in the decreasing order of Ar > O2 > NH3, but adhesion of the Cu layer on poly(ethylene terephthalate) (PET) film increased in the following order of O2 < Ar < NH3, indicating that the appropriate surface roughness and introduction of an affinitive functional group to Pd on the surface of the PET film were key factors for improving adhesion of the Cu layer. As investigated by XPS analysis, plasma treatment with NH3 produced N atoms on the PET film, which enhances the chemisorption of Pd2+ on PET film, resulting in improved adhesion and shielding effectiveness of the Cu layer deposited on the Pd‐catalyzed surface, because of the high affinity of Pd2+ for nitrogen. Comparatively, O2 plasma treatment allowed the chemisorption of more Sn2+ than of Pd2+ due to a lack in the affinity of Pd2+ for oxygen, resulting in the lowest Pd3d/Sn3d ratio; thereby, the lowest EMI–shielding effectiveness (SE) value was obtained. In addition, fairly low adhesion was obtained with Ar plasma‐treated PET, even though the PET surface was significantly etched with Ar plasma, due to introduced oxygen groups on the PET surface. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1369–1379, 2002; DOI 10.1002/app.10272  相似文献   

17.
This study attempted to correlate morphological changes and physical properties for a high rubber content acrylonitrile–butadiene–styrene (ABS) and its diluted blends with a poly(styrene‐co‐acrylonitrile) (SAN) copolymer. The results showed a close relationship between rubber content and fracture toughness for the blends. The change of morphology in ABS/SAN blends explains in part some deviations in fracture behavior observed in ductile–brittle transition temperature shifts. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2606–2611, 2004  相似文献   

18.
Polybutadiene‐g‐poly(styrene‐co‐acrylonitrile) (PB‐g‐SAN) impact modifiers with different polybutadiene (PB)/poly(styrene‐co‐acrylonitrile) (SAN) ratios ranging from 20.5/79.5 to 82.7/17.3 were synthesized by seeded emulsion polymerization. Acrylonitrile–butadiene–styrene (ABS) blends with a constant rubber concentration of 15 wt % were prepared by the blending of these PB‐g‐SAN copolymers and SAN resin. The influence of the PB/SAN ratio in the PB‐g‐SAN impact modifier on the mechanical behavior and phase morphology of ABS blends was investigated. The mechanical tests showed that the impact strength and yield strength of the ABS blends had their maximum values as the PB/SAN ratio in the PB‐g‐SAN copolymer increased. A dynamic mechanical analysis of the ABS blends showed that the glass‐transition temperature of the rubbery phase shifted to a lower temperature, the maximum loss peak height of the rubbery phase increased and then decreased, and the storage modulus of the ABS blends increased with an increase in the PB/SAN ratio in the PB‐g‐SAN impact modifier. The morphological results of the ABS blends showed that the dispersion of rubber particle in the matrix and its internal structure were influenced by the PB/SAN ratio in the PB‐g‐SAN impact modifiers. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 2165–2171, 2005  相似文献   

19.
Polyetheretherketone (PEEK) composites reinforced with potassium titanate whiskers (PTW) were compounded using a twin‐screw extruder followed by injection molding. The effects of PTW on the mechanical properties, crystallization performances and wear behaviors of PEEK under water lubrication have been investigated. It was denoted that the yield strength, Young's modulus, and microhardness of the composites increased with increasing whisker content, but the elongation at break and the impact strength showed decreasing trend. It was revealed that the inclusion of PTW could effectively reduce the friction coefficient and enhance the wear resistance of the PEEK. The DSC tests showed that the crystallinity of the composite slightly decreased with the addition of PTW, which might imply that the crystallinity of PEEK was not the dominant factor that influenced the wear properties of the composites. The enhancement on the wear resistance was attributed to the reinforced effect of PTW on PEEK. The wear mechanism changed from fatigue wear into mild abrasive wear when the PTW was added into PEEK. The lowest wear rate 9.3 × 10?8 mm3/Nm was achieved at 10 wt % PTW content. However, excessive whiskers would cause severe abrasive wear to the composite. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

20.
Bio‐based polymer composite was successfully fabricated from plant‐derived kenaf fiber (KF) and renewable resource‐based biodegradable polyester, poly(L ‐lactide) (PLLA), by melt‐mixing technique. The effect of the KF weight contents (0, 10, 20, and 30 wt %) on crystallization behavior, composite morphology, mechanical, and dynamic mechanical properties of PLLA/KF composites were investigated. It was found that the incorporation of KF significantly improves the crystallization rate and tensile and storage modulus. The crystallization of PLLA can be completed during the cooling process from the melt at 5°C/min with the addition of 10 wt % KF. It was also observed that the nucleation density increases dramatically and the spherulite size drops greatly in the isothermal crystallization with the presence of KF. In addition, with the incorporation of 30 wt % KF, the half times of isothermal crystallization at 120°C and 140°C were reduced to 46.5% and 28.1% of the pure PLLA, respectively. Moreover, the tensile and storage modulus of the composite are improved by 30% and 28%, respectively, by the reinforcement with 30% KF. Scanning electron microscopy observation also showed that the crystallization rate and mechanical properties could be further improved by optimizing the interfacial interaction and compatibility between the KF and PLLA matrix. Overall, it was concluded that the KF could be the potential and promising filler for PLLA to produce biodegradable composite materials, owing to its good ability to improve the mechanical properties as well as to accelerate the crystallization of PLLA. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号