首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper illustrates a probabilistic methodology for assessing the vulnerability of existing reinforced concrete (RC) buildings with limited ductility capacity retrofitted by means of dissipative braces. The aim is to highlight the most important parameters controlling the capacity of these coupled systems and specific aspects concerning the response uncertainties. The proposed methodology is based on the use of local engineering demand parameters for monitoring the seismic response and on the development of component and system fragility curves before and after the retrofit. In the first part of the paper, the methodology is illustrated by highlighting its advantages with respect to the existing approaches. Then, its capability and effectiveness are tested by considering a benchmark two‐dimensional RC frame designed for gravity‐loads only. The frame is retrofitted by introducing elasto‐plastic dissipative braces designed for different levels of base shear capacity. The obtained results show the effectiveness of the methodology in describing the changes in the response and in the failure modalities before and after the retrofit, for different retrofit levels. Moreover, the retrofit effectiveness is evaluated by introducing proper synthetic parameters describing the fragility curves and by stressing the importance of employing local engineering demand parameters (EDPs) rather than global EDPs in the seismic risk evaluation of coupled systems consisting in low‐ductility RC frames and dissipative braces. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, a practical method is developed for performance‐based design of RC structures subjected to seismic excitations. More efficient design is obtained by redistributing material from strong to weak parts of a structure until a state of uniform deformation or damage prevails. By applying the design algorithm on 5, 10 and 15‐storey RC frames, the efficiency of the proposed method is initially demonstrated for specific synthetic and real seismic excitations. The results indicate that, for similar structural weight, designed structures experience up to 30% less global damage compared with code‐based design frames. The method is then developed to consider multiple performance objectives and deal with seismic design of RC structures for a design spectrum. The results show that the proposed method is very efficient at controlling performance parameters and improving structural behaviour of RC frames. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Unreinforced masonry (URM) infill panels are widely used as partitions in RC frames and typically considered as non‐structural elements in the design process. However, observations from recent major earthquakes have shown that under seismic excitation, the structural interaction between columns and infill walls can significantly alter the structural behaviour, thus causing catastrophic consequences. The purpose of this research was to propose and test an innovative low seismic damage detailing method, which isolates the infill panel from bounding columns with finite width vertical gaps during the infill panel construction phase and deploys steel wire connections in mortar layers anchored to columns. Taking into account the similitude requirements, a total of six one‐third scale, single‐storey single‐bay RC frames with different infill configurations and flexible connection details were carefully designed and tested on a shake‐table. Three real earthquake records were selected and scaled to ascending intensity levels and used as input signals. A series of thorough investigations including dynamic characteristics, hysteretic behaviour, failure mechanisms, out‐of‐plane vulnerabilities and the effect of different gap filling materials and load transfer mechanisms were rigorously studied. The experimental results indicate that the undesirable interaction between infill panels and bounding frame is significantly reduced using the proposed low seismic damage detailing concept. Direct shear failure of columns at an early stage is prevented, and structural redundancy at high levels of excitation can be provided. In general, the structural stability and integrity, and displacement ductility of infilled RC frames can remarkably be improved. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

4.
One of the main challenges in earthquake risk mitigation is the assessment of existing buildings not designed according to modern codes and the development of effective techniques to strengthen these structures. Particular attention should be given to RC frame structures with masonry infill panels, as demonstrated by their poor performance in recent earthquakes in Europe. Understanding the seismic behaviour of masonry‐infilled RC frames presents one of the most difficult problems in structural engineering. Analytical tools to evaluate infill–frame interaction and the failure mechanisms need to be further studied. This research intends to develop a simplified macro‐model that takes into account the out‐of‐plane behaviour of the infill panels and the corresponding in‐plane and out‐of‐plane interaction when subjected to seismic loadings. Finally, a vulnerability assessment of an RC building will be performed in order to evaluate the influence of the out‐of‐plane consideration in the building response. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Self‐centering reinforced concrete frames are developed as an alternative of traditional seismic force‐resisting systems with better seismic performance and re‐centering capability. This paper presents an experimental and computational study on the seismic performance of self‐centering reinforced concrete frames. A 1/2‐scale model of a two‐story self‐centering reinforced concrete frame model was designed and tested on the shaking table in State Key Laboratory of Disaster Reduction in Civil Engineering at Tongji University to evaluate the seismic behavior of the structure. A structural analysis model, including detailed modeling of beam–column joints, column–base joints, and prestressed tendons, was constructed in the nonlinear dynamic modeling software OpenSEES. Agreements between test results and numerical solutions indicate that the designed reinforced concrete frame has satisfactory seismic performance and self‐centering capacity subjected to earthquakes; the self‐centering structures can undergo large rocking with minor residual displacement after the earthquake excitations; the proposed analysis procedure can be applied in simulating the seismic performance of self‐centering reinforced concrete frames. To achieve a more comprehensive evaluation on the performance of self‐centering structures, research on energy dissipation devices in the system is expected. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Passive energy dissipation devices are increasingly implemented in frame structures to improve their performance under seismic loading. Most guidelines for designing this type of system retain the requirements applicable to frames without dampers, and this hinders taking full advantage of the benefits of implementing dampers. Further, assessing the extent of damage suffered by the frame and by the dampers for different levels of seismic hazard is of paramount importance in the framework of performance‐based design. This paper presents an experimental investigation whose objectives are to provide empirical data on the response of reinforced concrete (RC) frames equipped with hysteretic dampers (dynamic response and damage) and to evaluate the need for the frame to form a strong column‐weak beam mechanism and dissipate large amounts of plastic strain energy. To this end, shake‐table tests were conducted on a 2/5‐scale RC frame with hysteretic dampers. The frame was designed only for gravitational loads. The dampers provided lateral strength and stiffness, respectively, three and 12 times greater than those of the frame. The test structure was subjected to a sequence of seismic simulations that represented different levels of seismic hazard. The RC frame showed a performance level of ‘immediate occupancy’, with maximum rotation demands below 20% of the ultimate capacity. The dampers dissipated most of the energy input by the earthquake. It is shown that combining hysteretic dampers with flexible reinforced concrete frames leads to structures with improved seismic performance and that requirements of conventional RC frames (without dampers) can be relieved. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
A new hybrid ductile‐rocking seismic‐resistant design is proposed which consists of a code‐designed buckling‐restrained braced frame (BRBF) that yields along its height and also partially rocks on its foundation. The goal of this system is to cost‐effectively improve the performance of BRBFs, by reducing drift concentrations and residual deformations, while taking advantage of their large ductility and their reliable limit on seismic forces and accelerations along a building's height. A lock‐up device ensures that the full code‐compliant lateral strength can be achieved after a limited amount of column uplift, and supplemental energy dissipation elements are used to reduce the rocking response. This paper outlines the mechanics of the system and then presents analyses on rocking frames with both ductile and elastic braces in order to highlight the large higher mode demands on elastic rocking frames. A parametric study using nonlinear time‐history analysis of BRBF structures designed according to the proposed procedure for Los Angeles, California is then presented. This study investigates the system's seismic response and the effect of different energy dissipation element properties and allowable base rotation values before the lock‐up is engaged. Finally, the effect of vertical mass modeling on analysis results was investigated. These studies demonstrated that the hybrid ductile‐rocking system can in fact improve the global peak and residual deformation response as well as reduce brace damage. This enhanced performance could eliminate the need for expensive repairs or demolition that are otherwise to be expected for conventional ductile fixed base buildings that sustain severe damage.  相似文献   

8.
It is well known that axial force – bending moment interaction (N–M interaction) affects to a large extent the cyclic inelastic behaviour of structural elements, especially columns in framed structures, with reduction in bending capacity and loss of available ductility. A few studies have also shown that significant inelastic axial shortening affects the response of column elements subjected to medium–high levels of axial loads and cyclic bending. This paper is primarily aimed at evaluating the effects of column N–M interaction on the inelastic seismic response of steel frames. By considering the contemporaneous action of vertical loads, due to gravity, and of horizontal seismic excitation, it is shown that the progressive axial shortening of adjacent columns may differ substantially, thus inducing significant relative settlements at the ends of the connecting beams and, then, remarkable amplifications in beam plastic rotations. An evaluation of additional beam plastic rotations induced by column N–M interaction is carried out for real structures by investigating the inelastic response of steel frames designed according to European standards under horizontal and vertical earthquake excitations. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
Damage to building structures due to underground blast‐induced ground motions is a primary concern in the corresponding determination of the safe inhabited building distance (IBD). Because of the high‐frequency nature of this category of ground motions and especially the presence of significant vertical component, the characteristics of structural response and damage differ from those under seismic type low‐frequency ground motions. This paper presents a numerical investigation aimed at evaluating reinforced concrete (RC) structure damage generated by underground blast‐induced ground excitation. In the numerical model, two damage indices are proposed to model reinforced concrete failure. A fracture indicator is defined to track the cracking status of concrete from micro‐ to macrolevel; the development of a plastic hinge due to reinforcement yielding is monitored by a plastic indicator; while the global damage of the entire structure is correlated to structural stiffness degradation represented by its natural frequency reduction. The proposed damage indices are calibrated by a shaking table test on a 1: 5‐scale frame model. They are then applied to analyse the structural damage to typical low‐ to high‐rise RC frames under blast‐induced ground motions. Results demonstrate a distinctive pattern of structural damage and it is shown that the conventional damage assessment methods adopted in seismic analysis are not applicable here. It is also found that the existing code regulation on allowable peak particle velocity of blast‐induced ground motions concerning major structural damage is very conservative for modern RC structures. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
A comprehensive parametric study on the inelastic seismic response of seismically isolated RC frame buildings, designed for gravity loads only, is presented. Four building prototypes, with 23 m × 10 m floor plan dimensions and number of storeys ranging from 2 to 8, are considered. All the buildings present internal resistant frames in one direction only, identified as the strong direction of the building. In the orthogonal weak direction, the buildings present outer resistant frames only, with infilled masonry panels. This structural configuration is typical of many existing RC buildings, realized in Italy and other European countries in the 60s and 70s. The parametric study is based on the results of extensive nonlinear response‐time history analyses of 2‐DOF systems, using a set of seven artificial and natural seismic ground motions. In the parametric study, buildings with strength ratio (Fy/W) ranging from 0.03 to 0.15 and post‐yield stiffness ratio ranging from 0% to 6% are examined. Three different types of isolation systems are considered, that is, high damping rubber bearings, lead rubber bearings and friction pendulum bearings. The isolation systems have been designed accepting the occurrence of plastic hinges in the superstructure during the design earthquake. The nonlinear response‐time history analyses results show that structures with seismic isolation experience fewer inelastic cycles compared with fixed‐base structures. As a consequence, although limited plastic deformations can be accepted, the collapse limit state of seismically isolated structures should be based on the lateral capacity of the superstructure without significant reliance on its inherent hysteretic damping or ductility capacity. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
Performance‐based engineering (PBE) methodologies allow for the design of more reliable earthquake‐resistant structures. Nonetheless, to implement PBE techniques, accurate finite element models of critical components are needed. With these objectives in mind, initially, we describe an experimental study on the seismic behaviour of both beam‐to‐column (BTC) and column‐base (CB) joints made of high‐strength steel S590 circular columns filled with concrete. These joints belonged to moment‐resisting frames (MRFs) that constituted the lateral‐force‐resisting system of an office building. BTC joints were conceived as rigid and of partial strength, whereas CB joints were designed as rigid and of full strength. Tests on a BTC joint composed of an S275 steel composite beam and high‐strength steel concrete‐filled tubes were carried out. Moreover, two seismic CB joints were tested with stiffeners welded to the base plate and anchor bolts embedded in the concrete foundation as well as where part of a column was embedded in the foundation with no stiffeners. A test programme was carried out with the aim of characterising these joints under monotonic, cyclic and random loads. Experimental results are presented by means of both force–interstory drift ratio and moment–rotation relationships. The outcomes demonstrated the adequacy of these joints to be used for MRFs of medium ductility class located in zones of moderate seismic hazard. Then, a numerical calibration of the whole joint subassemblies was successfully accomplished. Finally, non‐linear time‐history analyses performed on 2D MRFs provided useful information on the seismic behaviour of relevant MRFs. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
This paper presents a detailed study on feasibility of un‐bonded fiber reinforced elastomeric isolator (U‐FREI) as an alternative to steel reinforced elastomeric isolator (SREI) for seismic isolation of un‐reinforced masonry buildings. Un‐reinforced masonry buildings are inherently vulnerable under seismic excitation, and U‐FREIs are used for seismic isolation of such buildings in the present study. Shake table testing of a base isolated two storey un‐reinforced masonry building model subjected to four prescribed input excitations is carried out to ascertain its effectiveness in controlling seismic response. To compare the performance of U‐FREI, same building is placed directly on the shake table without isolator, and fixed base (FB) condition is simulated by restraining the base of the building with the shake table. Dynamic response characteristic of base isolated (BI) masonry building subjected to different intensities of input earthquakes is compared with the response of the same building without base isolation system. Acceleration response amplification and peak response values of test model with and without base isolation system are compared for different intensities of table acceleration. Distribution of shear forces and moment along the height of the structure and response time histories indicates significant reduction of dynamic responses of the structure with U‐FREI system. This study clearly demonstrates the improved seismic performance of un‐reinforced masonry building model supported on U‐FREIs under the action of considered ground motions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Post‐tensioned (PT) self‐centering moment‐resisting frames (MRFs) have recently been developed as an alternative to welded moment frames. The first generation of these systems incorporated yielding energy dissipation mechanisms, whereas more recently, PT self‐centering friction damped (SCFR) moment‐resistant connections have been proposed and experimentally validated. Although all of these systems exhibited good stiffness, strength and ductility properties and stable dissipation of energy under cyclic loading, questions concerning their ultimate response still remained and a complete design methodology to allow engineers to conceive structures using these systems was also needed. In this paper, the mechanics of SCFR frames are first described and a comprehensive design procedure that accounts for the frame behavior and the nonlinear dynamics of self‐centering frames is then elaborated. A strategy for the response of these systems at ultimate deformation stages is then proposed and detailing requirements on the beams in order to achieve this response are outlined. The proposed procedure aims to achieve designs where the interstory drifts for SCFR frames are similar to those of special steel welded moment‐resisting frames (WMRFs). Furthermore, this procedure is adapted from current seismic design practices and can be extended to any other PT self‐centering steel frame system. A six‐story building incorporating WMRFs was designed and a similar building incorporating SCFR frames were re‐designed by the proposed seismic design procedure. Time‐history analyses showed that the maximum interstory drifts and maximum floor accelerations of the SCFR frame were similar to those of the WMRF but that almost zero residual drifts were observed for the SCFR frame. The results obtained from the analyses confirmed the validity of the proposed seismic design procedure, since the peak drift values were similar to those prescribed by the seismic design codes and the SCFR frames achieved the intended performance level under both design and maximum considerable levels of seismic loading. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
A 1:5 scale five‐story RC building model having the irregularities of a soft/weak story and torsion at the ground story was subjected to a series of earthquake simulation tests. The test results reveal the following: The eccentricity varied from zero to infinity with the values of base shear and torque bounded by some limits. As the intensity of table excitations increased, representing earthquakes with return periods from 50 to 2500 years in Korea, the range of eccentricities at the peak values in the time histories of drift and base shear decreased from approximately ±30% to within ±10% of the transverse dimension of the model. The inertial torque was resisted by both longitudinal and transverse frames, in proportion to their instantaneous rigidity. Yielding of the longitudinal frames under severe table excitations caused a substantial loss in their instantaneous torsional resistance and thereby transferred most of the large torque to the transverse frames, resulting in a significantly degraded torsional stiffness with an enlarged torsional deformation despite almost zero eccentricity. From these observations, it is clear that the eccentricity in itself cannot represent the critical torsional behaviors. To overcome this problem, the demand in torque shall be determined in a direct relationship with the base or story shear, given as an ellipse constructed with the maximum points in its principal axes located by the two adjacent torsion‐dominant modal spectral values. This approach provides a simple but transparent design tool by enabling comparison between demand and supply in shear force–torque diagrams. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
The seismic design of multi‐story buildings asymmetric in plan yet regular in elevation and stiffened with ductile RC structural walls is addressed. A realistic modeling of the non‐linear ductile behavior of the RC walls is considered in combination with the characteristics of the dynamic torsional response of asymmetric buildings. Design criteria such as the determination of the system ductility, taking into account the location and ductility demand of the RC walls, the story‐drift demand at the softer (most displaced) edge of the building under the design earthquake, the allowable ductility (ultimate limit state) and the allowable story‐drift (performance goals) are discussed. The definition of an eccentricity of the earthquake‐equivalent lateral force is proposed and used to determine the effective displacement profile of the building yet not the strength distribution under the design earthquake. Furthermore, an appropriate procedure is proposed to calculate the fundamental frequency and the earthquake‐equivalent lateral force. A new deformation‐based seismic design method taking into account the characteristics of the dynamic torsional response, the ductility of the RC walls, the system ductility and the story‐drift at the softer (most displaced) edge of the building is presented and illustrated with an example of seismic design of a multi‐story asymmetric RC wall building. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
This paper proposes a novel implementation of buckling‐restrained braces (BRB) in new reinforced concrete (RC) frame construction. Seismic design and analysis methods for using a proposed steel cast‐in anchor bracket (CAB) to transfer normal and shear forces between the BRB and RC members are investigated. A full‐scale two‐story RC frame with BRBs (BRB‐RCF) is tested using hybrid and cyclic loading test procedures. The BRBs were arranged in a zigzag configuration and designed to resist 70% of the story shear. The gusset design incorporates the BRB axial and RCF actions, while the beam and column members comply with ACI 318‐14 seismic design provisions. Test results confirm that the BRBs enhanced the RCF stiffness, strength, and ductility. The hysteresis energy dissipation ratios in the four hybrid tests range from 60% to 94% in the two stories, indicating that BRBs can effectively dissipate seismic input energy. When the inter‐story drift ratio for both stories reached 3.5% in the cyclic loading test, the overall lateral force versus deformation response was still very stable. No failure of the proposed steel CABs and RC discontinuity regions was observed. This study demonstrates that the proposed design and construction methods for the CABs are effective and practical for real applications. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
Centralized semi‐active control is a technique for controlling the whole structure using one main computer. Centralized control systems introduce better control for relatively short to medium high structures where the response of any story cannot be separated from the adjacent ones. In this paper, two centralized control approaches are proposed for controlling the seismic response of post‐tensioned (PT) steel frames. The first approach, the stiffness control approach, aims to alter the stiffness of the PT frame so that it avoids large dynamic amplifications due to earthquake excitations. The second approach, deformation regulation control approach, aims at redistributing the demand/strength ratio in order to provide a more uniform distribution of deformations over the height of the structure. The two control approaches were assessed through simulations of the earthquake response of semi‐actively and passively controlled six‐story post‐tensioned steel frames. The results showed that the stiffness control approach is efficient in reducing the frame deformations and internal forces. The deformation regulation control approach was found to be efficient in reducing the frame displacements and generating a more uniform distribution of the inter‐story drifts. These results indicate that centralized semi‐active control can be used to improve the seismic performance of post‐tensioned steel frames. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
The results of experimental tests carried out on reinforced concrete (RC) full‐scale 2‐storey 2‐bays framed buildings are presented. The unretrofitted frame was designed for gravity loads only and without seismic details; such frame was assumed as a benchmark system in this study. A similar RC frame was retrofitted with buckling‐restrained braces (BRBs). The earthquake structural performance of both prototypes was investigated experimentally using displacement‐controlled pushover static and cyclic lateral loads. Modal response properties of the prototypes were also determined before and after the occurrence of structural damage. The results of the dynamic response analyses were utilized to assess the existing design rules for the estimation of the elastic and inelastic period of vibrations. Similarly, the values of equivalent damping were compared with code‐base relationships. It was found that the existing formulations need major revisions when they are used to predict the structural response of as‐built RC framed buildings. The equivalent damping ratio ξeq was augmented by more than 50% when the BRBs was employed as bracing system. For the retrofitted frame, the overstrength Ω and the ductility µ are 1.6 and 4.1, respectively; the estimated R‐factor is 6.5. The use of BRBs is thus a viable means to enhance efficiently the lateral stiffness and strength, the energy absorption and dissipation capacity of the existing RC substandard frame buildings. The foundation systems and the existing members of the superstructure are generally not overstressed as the seismic demand imposed on them can be controlled by the axial stiffness and the yielding force of the BRBs. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
Presence of irregularities in reinforced concrete (RC) buildings increases seismic vulnerability. During severe seismic shaking, such buildings may suffer disproportionate damage or even collapse that can be minimized by increasing robustness. Robustness is a desirable property of structural systems that can mitigate susceptible buildings to disproportionate collapse. In this paper, the effects of vertical irregularity and thickness of unreinforced masonry infill on the robustness of a six‐story three‐bay RC frame are quantified. Nonlinear static analysis of the frame is performed, and parametric study is undertaken by considering two parameters: absence of masonry infill at different floors (i.e., vertical irregularities) and infill thickness. Robustness has been quantified in terms of stiffness, base shear, ductility, and energy dissipation capacity of the frame. It was observed that the infill thickness and vertical irregularity have significant influence on the response of RC frame. The response surface method is used to develop a predictive equation for robustness as a function of the two parameters. The predictive equation is validated further using 12 randomly selected computer simulations. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Nonlinear behaviour of RC frames under repeated strong ground motions   总被引:1,自引:0,他引:1  
This paper presents an extensive parametric study on the inelastic response of eight reinforced concrete (RC) planar frames which are subjected to forty five sequential ground motions. Two families of regular and vertically irregular (with setbacks) frames are examined. The first family has been designed for seismic and vertical loads according to European codes while the second one only for vertical loads, to study structures which have been constructed before the introduction of adequate seismic design code provisions. The whole range of frames is subjected to five real seismic sequences which are recorded by the same station, in the same direction and in a short period of time, up to three days. In such cases, there is a significant damage accumulation as a result of multiplicity of earthquakes, and due to lack of time, any rehabilitation action is impractical. Furthermore, the examined frames are also subjected to forty artificial seismic sequences. Comprehensive analysis of the created response databank is employed in order to derive important conclusions. It is found that the sequences of ground motions have a significant effect on the response and, hence, on the design of reinforced concrete frames. Furthermore, it is concluded that the ductility demands of the sequential ground motions can be accurately estimated using appropriate combinations of the corresponding demands of single ground motions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号