首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Core–shell structured particles, which comprise the rubbery core and glassy layers, were prepared by emulsifier‐free emulsion polymerization of poly(n‐butyl acrylate/methyl methacrylate)/polystyrene [P(n‐BA/MMA)/PS]. The particle diameter was about 0.22 μm, and the rubbery core was uncrosslinked and lightly crosslinked, respectively. The smaller core–shell structured particle–toughened PS blends were investigated in detail. The dynamic mechanical behavior and observation by scanning electron microscopy of the modified blend system with core–shell structured particles indicated good compatibility between PS and the particles, which is the necessary qualification for an effective toughening modifier. Notched‐impact strength and related mechanical properties were measured for further evaluation of the toughening efficiency. The notched‐impact strength of the toughened PS blends with uncrosslinked particles reached almost sixfold higher than that of the untoughened PS when 15 phr of the core–shell structured particles was added. For the crosslinked particles the toughening effect for PS was not obvious. The toughening mechanism for these smaller particles also is discussed in this article. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 1290–1297, 2003  相似文献   

2.
Polystyrene/poly(vinyl acetate) latex nanoparticles with a core–shell morphology in an emulsifier‐free emulsion polymerization system were prepared with purified styrene and vinyl acetate (VAc) as monomers and 2,2′‐azo bis(2‐amino propane) dihydrochloride (ABA,2HCl) as the initiator and emulsifier. The optimized conditions of polymerization of VAc, on top of the already‐formed polystyrene as a core polymer, with a core–shell morphology were obtained using various parameters such as volume ratio of the first and second stages, type of process, and reaction time. The morphologic structure of the nanoparticles was studied by scanning electron microscopy and transmission electron microscopy. The latex nanoparticles and polymers were characterized by differential scanning calorimetry. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2409–2414, 2006  相似文献   

3.
Poly(butyl acrylate–methyl methacrylate) [P(BA–MMA]/polyaniline (PANI) core–shell complex particles were synthesized with a two‐step emulsion polymerization method with P(BA–MMA) as the core and PANI as the shell. The first step was to prepare P(BA–MMA) latex particles as the core via soapless emulsion polymerization. The second step was to prepare P(BA–MMA)/PANI core–shell particles. Sodium dodecyl sulfate was fed into the P(BA–MMA) emulsion as a surfactant, and this was followed by the addition of the aniline monomer. A bilayer structure of the surfactant over the surfaces of the core particles was desired so that the aniline monomer could be attracted near the outer surface of the core particles. In some cases, dodecyl benzene sulfonic acid was added after 2 h when the polymerization of aniline was started. The final product was the desired core–shell particles. The morphology of P(BA–MMA) and P(BA–MMA)/PANI particles was observed with transmission electron microscopy. The thermal properties were studied with thermogravimetric analysis and differential scanning calorimetry. Furthermore, conductive films made from the core–shell latexes were prepared, and the electrical conductivities of the films were studied. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 823–830, 2007  相似文献   

4.
3‐Allyloxy‐2‐hydroxyl‐propanesulfonic (AHPS) salt was synthesized and used as a hydrophilic comonomer for the methyl methacrylate (MMA) and n‐butyl acrylate (BA) emulsifier‐free emulsion copolymerization system to obtain latices of stable and high‐solid content. Properties of the latices, such as flow behavior, stability, and final diameter of the latex particles were studied. In addition, physical properties of the obtained copolymers, such as glass transition temperature (Tg), stress–strain behavior, and water resistance were investigated. With the addition of AHPS, the latices of stable and high‐solid content (as high as 60%) were prepared. Flow of the latices follows the law of the Bingham body. The final diameter of the latex particles is 0.3–0.5 μm in diameter, which is larger than that of the conventional latex particles and decreases with the increase of AHPS and potassium persulfate (KPS) concentration. All the copolymers are atactic polymers, showed as single Tg on dynamic mechanical analysis spectrum. Compared with the copolymers that were prepared by surfactant emulsion polymerization, tensile strength, as well as water resistance is greatly improved. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 21–28, 2001  相似文献   

5.
Novel core‐shell latices with a partially crosslinked hydrophilic polymer core and a hard hydrophobic shell of polystyrene were prepared to improve optical properties of coated paper such as gloss and brightness. These core‐shell latices were prepared by sequential addition of a monomer mixture of styrene, n‐butylacrylate and methacrylic acid. Different crosslinkers were used to form the polymer core and in the second stage styrene to form the hard shell component. In addition, attempts were made to further improve optical properties by introducing a new polymerizable optical brightener, i.e., 1‐[(4‐vinylphenoxy)methyl]‐4‐(2‐phenylethylenyl)benzene during polymerization either into the core or into the shell. The prepared core‐shell latex particles were used as specialty plastic pigments for paper coating together with kaolin as the primary pigment. The runability of paper coating formulation by either using a laboratory scale Helicoater or pilot scale JET‐coating machine was very good. The produced coated papers were printed on both sides employing a heat set web offset (HSWO) printer to study the quality of image reproduction in terms of print gloss, print mottle, print through, etc. The core‐shell latices improved the overall print quality. Furthermore, the results demonstrated that by optimizing polymer composition one can significantly enhance the optical properties and surface smoothness of coated paper. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

6.
The aim of this study was to design polymeric nanospheres containing magnetic nanoparticle which could display superparamagnetic behavior and thus find application in allied fields. First magnetite nanoparticles were synthesized with coprecipitation method and then their stable acidic dispersion was prepared without surfactant and dropped into the polymerization system during a certain time interval after the polymerization started. The effects of time at which the magnetic sol was added into polymerization system on latex size and stability, average molecular weight of polymer were examined in the case of two different monomer concentrations. Extensive characterization by transmission electron microscopy, dynamic light scattering, thermal gravimetric analysis and magnetic measurements shows that when the magnetic sol was dropped during earlier time of polymerization at stage 1, the latex size, average molecular weight of polymer, thermal stability of polymeric composite, and saturation magnetization reduced, whereas polydispersity of size and molecular weight increased because of the reaction between persulfate and naked surface of magnetite at the aqueous phase. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

7.
Emulsifier‐free emulsion polymerization of styrene (St) and copolymerization of St and 4‐vinyl pyridine (4VP) in the presence of ammonium persulfate were studied. A comparison between the two polymerization systems was made. It was found that there were big differences comparing polymerization rate, the number and size of the particles and distribution, and molecular weight. For the St–4VP system, it was found that the additional amount of 4VP influenced the copolymerization of St and 4VP, molecular weight, and particle size. The formation mechanism of the particles was discussed. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1502–1507, 1999  相似文献   

8.
Stable functional cationic latices were prepared by emulsifier‐free emulsion copolymerization of styrene (St) and butyl‐acrylate (BA) with 1‐butyl‐4‐vinylpyridinium bromide (qBVPBr) as functional comonomer and azobis(isobutyramidine hydrochloride) (AIBA) as initiator at (70 ± 1)°C. The influences of the reaction temperature, the initiator concentration, and comonomer concentration on the polymerization conversion (x %), polymerization rate (Rp) of poly(St/BA/qBVPBr) emulsions were investigated. The results indicated that x % and Rp increase with increasing qBVPBr or AIBA concentration and temperature, and Rp can be expressed as Rp = Kp[AIBA]0.73[qBVPBr]0.08 (rAIBA = 0.9968; rqBVPBr = 0.9946, both rAIBA and rqBVPBr are linear correlation coefficient) and the apparent activation energy (Ea) is 47.89 kJ mol?1. In the absence of emulsifier condition, curves of Rp versus reaction time obeyed the typical behavior characterized by Intervals I, II, and III as similar conventional emulsion polymerization. The formation and growth of poly(St/BA/qBVPBr) latex particles has been studied at different reaction times. The results indicate that Np decrease gradually with time at the early polymerization stages and then reach a constant value after about 20% conversion, but Dp by photon correlation spectroscopy grow continuously as all polymerization proceed. Both the particle size distribution and molecular weight distribution curves are of bimodal size distribution and indicate the participation of at least two mechanisms of particle formation, namely, homogeneous nucleation in the aqueous phase and micellar nucleation. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

9.
Self crosslinkable core‐shell polyacrylate latices (PAs) cured at ambient temperature were synthesized by semicontinuous‐seeded emulsion polymerization with diacetone acrylamide (DAAM) and adipic dihydrazide (ADH) as crosslinkable monomers. The influences of DAAM monomer mass content, neutralizer, and curing temperature on the properties of self crosslinkable core‐shell latices and the keto‐hydrazide crosslinking were discussed. The spectroscopic techniques such as Fourier transform infrared spectroscopy (FTIR), differential scanning calorimeter (DSC), atomic force microscopy (AFM), transmission electron microscopy (TEM), and contact angle instruments were used to determine the structure and properties of PAs. The water evaporating rate during the film‐forming process of self crosslinkable core‐shell latices was also investigated. FTIR analyses demonstrate that the keto‐hydrazide crosslinking reaction does not occur in the latex environment but occurs at ambient temperature with the evaporation of water during the film‐forming process. The results of DSC show that the core‐shell crosslinkable PAs have two glass transition temperatures (Tg), and Tgs of crosslinked film are higher than that of non crosslinked fim. Moreover, the keto‐hydrazide reaction is found to be acid catalyzed and favored by the loss of water and the simultaneous decrease in pH arising from the evaporation of ammonia or amines during film‐forming process. Hence, in the volatile ammonia or amines neutralized latices, the latex pH value adjusted to 7–8, which not only ensure the crosslinkable latex with good storage stability but also obtain a coating film with excellent performances by introducing the keto‐hydrazine crosslinking reaction. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

10.
In the absence of emulsifier, we prepared stable emulsifier‐free polymethylmethacrylate/polystyrene (PMMA/PSt) copolymer latex by batch method with comonomer N,N‐dimethyl, N‐butyl, N‐methacryloloxylethyl ammonium bromide (DBMEA) by using A1BN as initiator. The size distribution of the latex particles was very narrow and the copolymer particles were spherical and very uniform. Under the same recipe and polymerization conditions, PMMA/PSt and PSt/PMMA composite polymer particle latices were prepared by a semicontinuous emulsifier‐free seeded emulsion polymerization method. The sizes and size distributions of composite latex particles were determined both by quasi‐elastic light scattering and transmission electron microscopy (TEM). The effects of feeding manner and staining agents on the morphologies of the composite particles were studied. The results were as follows: the latex particles were dyed with pH 2.0 phosphotungestic acid solution and with uranyl acetate solution, respectively, revealing that the morphologies of the composite latex particles were obviously core–shell structures. The core–shell polymer structure of PMMA/PSt was also studied by 1H, 13C, 2D NMR, and distortionless enhancement by polarization transfer, or DEPT, spectroscopy. Results showed that PMMA/PSt polymers are composed of PSt homopolymer, PMMA homopolymer, and PMMA‐g‐PSt graft copolymers; results by NMR are consistent with TEM results. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1681–1687, 2005  相似文献   

11.
In the present work polymer microgels were prepared by emulsifier‐free emulsion copolymerization of unsaturated polyesters (UPs) with end carboxyl groups and styrene (St). The nucleation mechanism of UP‐St emulsifier‐free emulsion polymerization was proposed. The effects of the ratio of the monomers to water, pH, and the ratio of UP to St on the stability of polymerization and the yield of microgels were studied. It was found that the polymer microgels can be used to markedly improve the impact strength of UP. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 3049–3053, 2000  相似文献   

12.
Well‐defined poly(butyl acrylate)/poly(methyl methacrylate) (PBA/PMMA) core shell particles with a moderately high solid content (49%) and particle diameters of less than 200 nm were prepared via seeded emulsion polymerization with a redox initiator and an anionic surfactant. Low‐viscosity (less than 150 cps at 20 s?1) latex products were obtained by controlling the particle size distribution to within certain limits. Polymerization conversion and kinetics were followed gravimetrically and were adjusted so as to obtain recipes that could be scaled‐up for industrial production. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

13.
A core–shell fluorine–silicon modified polyacrylate hybrid latex was successfully prepared via emulsifier‐free emulsion polymerization. The chemical composition and core–shell morphology of the resultant hybrid particles were investigated using 1H NMR and Fourier transform infrared spectroscopies and transmission electron microscopy (TEM), respectively. TEM analysis indicated that the core–shell hybrid particles were uniform with narrow size distributions. The particle size and zeta potential decreased with an increase of alkylvinylsulfonate surfactant from 2.5 to 6.0 wt%. X‐ray photoelectron spectroscopy revealed that fluorine concentrated preferentially at the film surface during a film‐formation process. The film formed from the fluorine–silicon modified polyacrylate showed much higher thermal stability than a film formed from polyacrylate and fluorine‐modified polyacrylate. Contact angle results showed that a finished fabric had remarkable water repellency. © 2015 Society of Chemical Industry  相似文献   

14.
Anionic aqueous polyurethane dispersion was synthesized through self‐emulsifing method from cycloaliphatic isophorone diisocyanate (IPDI) and dimethylolpropionic acid (DMPA). The carboxyl acid group in DMPA was used to make the polyurethane dispersible. The polyurethane/polyacrylate (PU/PA) composite particles were also prepared by seeded surfactant‐free emulsion polymerization; the cycloaliphatic polyurethane aqueous dispersion was used as seed particles. The structures and properties of the composite emulsion as well as the physical mixture of polyurethane dispersion and polyacrylate emulsion were characterized by FTIR, DSC, dynamic light scattering, TEM, X‐ray photoelectron spectroscopy (ESCA), and electronic tensile machine. The results showed that the synthesized PU/PA composite emulsion was found to form inverted core‐shell structure with polyacrylate as the core and with polyurethane as the shell, and its diameter of particles is in the range of nanograde, the crosslinking reaction was existed in composite emulsion. The intimate molecular mixing of crosslinking polymers are also claims to result in a superior balance of properties compared to physical blends of polyurethane dispersion and acrylate emulsion. The crosslinking mechanism of PU/PA composite emulsion was also discussed. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

15.
ABSTRACT: Doxorubicin‐loaded poly(butylcyanoacrylate) (PBCA) nanoparticles (NPs) were prepared by an emulsifier‐free emulsion polymerization technique. The pH values of the polymerization medium and the weight ratios of doxorubicin to butylcyanoacrylate had a significant effect on the mean particle size. The particle diameter determined by transmission electron microscopy showed that the nanoparticles were predominantly less than 50 nm. Drug loading and entrapment efficiency increased with increasing pH of the medium. The surface tension of the polymerization media increased with increasing polymerization time and reached a plateau after 4 h. Doxorubicin‐loaded PBCA NPs carried a positive charge, and the zeta potential of drug‐loaded nanoparticles increased with the increase of the polymerization pH. Molecular weight, analyzed by gel permeation chromatography, showed that the nanoparticles mainly consisted of oligomers of PBCA. The release rate of doxorubicin from nanoparticles in biological phosphate buffer was very slow, with a half‐life of 111.43 h. The results indicate that drug‐loaded nanoparticles can be prepared by an emulsifier‐free emulsion polymerization technique and that the resulting nanoparticles might be suitable for targeting drug delivery vehicles for clinical application. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 517–526, 2000  相似文献   

16.
The core‐shell polyacrylate latex particles containing fluorine and silicon in the shell were successfully synthesized by a seed emulsion polymerization, using methyl methacrylate (MMA) and butyl acrylate (BA) as main monomers, dodecafluoroheptyl methacrylate (DFMA), and γ‐(methacryloxy) propyltrimethoxy silane (KH‐570) as functional monomers. The influence of the amount of fluorine and silicon monomers on the emulsion polymerization process and the surface properties of the latex films were discussed, and the surface free energy of latex films were estimated using two different theoretical models. The emulsion and its films were characterized by particle size distribution (PSD) analysis, transmission electron microscopy (TEM), Fourier transform infrared spectrum (FTIR), nuclear magnetic resonance (1H‐NMR and 19F‐NMR) spectrometry, contact angle (CA) and X‐ray photoelectron spectroscopy (XPS), differential scanning calorimetry (DSC), and thermogravimetry (TG) analysis. The results indicate that the average particle size of the latex particles is about 160 nm and the PSD is narrow, the synthesized latex particles exist with core‐shell structure, and a gradient distribution of fluorine and silicon exist in the latex films. In addition, both the hydrophobicity and thermal stability of the latex films are greatly improved because of the enrichment of fluorine and silicon at the film‐air interface, and the surface free energy is as low as 15.4 mN/m, which is comparable to that of polytetrafluoroethylene (PTFE). © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

17.
Core shell latex particles with a glassy core and a low Tg polymeric shell are usually preferred. More so, the glassy core happens to be a fluoropolymer with a shell polymer that helps in processability. We describe here the preparation and characterization of core shell nanoparticles consisting of poly(chlorotrifluoroethylene‐co‐ethylvinylether) as core encapsulated in poly(styrene‐acrylate) copolymer shell using seeded emulsion polymerization method under kinetically controlled monomer starved conditions. Properties of the emulsion using surfactants (fluoro/conventional) and surfactant free conditions were investigated. Average size (100 nm), spherical shape and core–shell morphology of the latex particles was confirmed by dynamic light scattering and transmission electron microscopy. Absence of C? F and C? Cl peaks in X‐ray photoelectron spectroscopy proves that cores are completely covered. Polymerization in the presence of fluorocarbon surfactant was found to give optimum features like narrow size distribution, good shell deposition and no traces of agglomeration. Films of core shell latex particles exhibited improved transparency and enhanced water contact angles thus making them suitable for applications in various fields including coatings. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

18.
Structured latex particles with a slightly crosslinked poly(styrene‐n‐butyl acrylate) (PSB) core and a poly(styrene–methacrylate–vinyl triethoxide silane) (PSMV) shell were prepared by seed emulsion polymerization, and the latex particle structures were investigated with Fourier transform infrared, thermogravimetric analysis, differential scanning calorimetry, transmission electron microscopy, and dynamic light scattering. The films that were formed from the structured core (PSB)–shell (PSMV) particles under ambient conditions had good water repellency and good tensile strength in comparison with films from structured core (PSB)–shell [poly(styrene–methyl methyacrylate)] latex particles; this was attributed to the self‐crosslinking of CH2?CH? Si(OCH2CH3)3 in the outer shell structure. The relationship between the particle structure and the film properties was also investigated in this work. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1824–1830, 2006  相似文献   

19.
In this study, the poly(methyl methacrylate/polystyrene (PMMA/PS) core‐shell composite latex was synthesized by the method of soapless seeded emulsion polymerization. The morphology of the PMMA/PS composite latex was core‐shell structure, with PMMA as the core and PS as the shell. The core‐shell morphology of the composite polymer latex was found to be thermally unstable. Under the effect of thermal annealing, the PS shell region first dispersed into the PMMA core region, and later separated out to the outside of the PMMA core region. This was explained on the basis of lowing interfacial tension between the PMMA and PS phases owing to the interpenetration layer. The interpenetration layer, which was located at the interface of the core and shell region, contained graft copolymer and entangled polymer chains. Both the graft copolymer and entangled polymer chains had the ability to lower the interfacial tension between the PMMA and PS phases. Also, the effect of thermal annealing on the morphology of commercial polymer/composite latex polymer blends was examined. The result showed that the core‐shell composite latex had the ability to enhance the compatibility of the components of polymer blends. The compatibilizing ability of the core‐shell composite latex was better than that of a random copolymer. Moreover, the effect of the amount of core‐shell composite latex on the morphology of the polymer blend was investigated. The polymer blends, which contained composite latex above 50% wt, showed the morphology of a double sea‐island structure. In addition, the composite latex was completely dissolved in solvent to destroy the core‐shell structure and release the entangled polymer chains, and then dried to form the entangled free composite polymer. The entangled free composite polymer had the ability to enhance the compatibility of the components of the polymer blend as usual. The weight ratio 3/7 commercial polymer/entangled free composite polymer blend showed the morphology of the phase inversion structure. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 312–321, 2003  相似文献   

20.
Poly(butyl acrylate)/poly(methyl methacrylate) (PBA/PMMA) core–shell particles embedded with nanometer‐sized silica particles were prepared by emulsion polymerization of butyl acrylate (BA) in the presence of silica particles preabsorbed with 2,2′‐azobis(2‐amidinopropane)dihydrochloride (AIBA) initiator and subsequent MMA emulsion polymerization in the presence of PBA/silica composite particles. The morphologies of the resulting PBA/silica and PBA/silica/PMMA composite particles were characterized, which showed that AIBA could be absorbed effectively onto silica particles when the pH of the dispersion medium was greater than the isoelectric potential point of silica. The critical amount of AIBA added to have stable dispersion of silica particles increased as the pH of the dispersion medium increased. PBA/silica composite particles prepared by in situ emulsion polymerization using silica preabsorbed with AIBA showed higher silica absorption efficiency than did the PBA/silica composite particles prepared by direct mixing of PBA latex and silica dispersion or by emulsion polymerization in which AIBA was added after the mixing of BA and silica. The PBA/silica composite particles exhibited a raspberrylike morphology, with silica particles “adhered” to the surfaces of the PBA particles, whereas the PBA/silica/PMMA composite latex particles exhibited a sandwich morphology, with silica particles mainly at the interface between the PBA core and the PMMA shell. Subsequently, the PBA/silica/PMMA composite latex obtained had a narrow particle size distribution and good dispersion stability. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99: 3425–3432, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号