首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Select rheological (dynamic viscoelastic) and mechanical properties of novel block cationomers and anionomers and their blends have been investigated. The block ionomers were linear di‐ and triblocks, and symmetric three‐arm stars comprising hydrophobic polyisobutylene (PIB) blocks attached to ionized poly(methacrylic acid) (PMAA?X+, where X+ = Na+, Zn2+) and poly[2‐(dimethylamino)ethyl methacrylate] (PDMAEMA+I?) blocks. The specific structures investigated were the well‐defined diblocks PIB‐b‐PMAA? and PIB‐b‐PDMAEMA+ and their blends, the triblocks PMAA?b‐PIB‐b‐PMAA? and PDMAEMA+b‐PIB‐b‐PDMAEMA+ and their blends, and the three‐arm star anionomer Φ(PIB‐b‐PMAA?)3. For comparison, the properties of the precursor PIBs and unionized blocks have also been studied. Hydrogen bonding between the carboxyl groups of the PMAA blocks in PIB‐b‐PMAA diblocks leads to inverse micelles. Neutralization of the PMAA by Zn(AcO)2 and quaternization of the PDMAEMA segments by CH3I in the triblock copolymers and star copolymers yielded ionic domains, which self‐assemble and produce physical networks held together by coulumbic interaction. The physical/chemical characteristics of the domains control the viscoelastic behavior and mechanical properties of these block ionomers. The mechanical properties of the various block ionomers were significantly enhanced relative to the precursors, and they were thermally stable below the transition temperature. Further, the thermomechanical properties of these novel materials were satisfactory even above 200°C. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1516–1525, 2003  相似文献   

2.
Hybrids, which were composed of the amphiphilic diblock copolymer polystyrene‐b‐poly(2‐hydroxylethyl methacrylate) (PSt‐b‐PHEMA) and nickel, cobalt, or a nickel–cobalt alloy, were characterized with infrared absorption spectroscopy and ultraviolet–visible (UV–vis) absorption spectroscopy. UV–vis spectroscopy analysis showed that a redshift happened after the PSt‐b‐PHEMA/metal‐ion complexes were reduced by KBH4. The PSt‐b‐PHEMA/nickel–cobalt alloy hybrids had the biggest redshift [difference of the UV‐vis absorption wavelength between (PSt‐b‐PHEMA)/metal ion complex and (PSt‐b‐PHEMA)/metal hybrids (Δλm = 19.9 nm)]. In comparison with the PSt‐b‐PHEMA/nickel hybrids (Δλm = 3.5 nm) and PSt‐b‐PHEMA/cobalt hybrids (Δλm = 9.0 nm). The magnetic properties of PSt‐b‐PHEMA/metal were studied with vibrating sample magnetometry. The results of magnetic hysteresis loop studies showed that the obtained PSt‐b‐PHEMA/metal hybrids could be categorized as ferromagnetic materials. The results showed that the magnetic susceptibility decreased with increasing temperature in the range of 150–400 K and increased with increasing temperature above 400 K. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

3.
Combination of cationic, redox free radical, and thermal free radical polymerizations was performed to obtain linear and star polytetramethylene oxide (poly‐THF)‐polymethyl methacrylate (PMMA)/polystyrene (PSt) multiblock copolymers. Cationic polymerization of THF was initiated by the mixture of AgSbF6 and bis(4,4′ bromo‐methyl benzoyl) peroxide (BBP) or bis (3,5,3′,5′ dibromomethyl benzoyl) peroxide (BDBP) at 20°C to obtain linear and star poly‐THF initiators with Mw varying from 7,500 to 59,000 Da. Poly‐THF samples with hydroxyl ends were used in the methyl methacrylate (MMA) polymerization in the presence of Ce(IV) salt at 40°C to obtain poly(THF‐b‐MMA) block copolymers containing the peroxide group in the middle. Poly(MMA‐b‐THF) linear and star block copolymers having the peroxide group in the chain were used in the polymerization of methyl methacrylate (MMA) and styrene (St) at 80°C to obtain PMMA‐b‐PTHF‐b‐PMMA and PMMA‐b‐PTHF‐b‐PSt linear and star multiblock copolymers. Polymers obtained were characterizated by GPC, FT‐IR, DSC, TGA, 1H‐NMR, and 13C‐NMR techniques and the fractional precipitation method. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 219–226, 2004  相似文献   

4.
The block copolymer polystyrene‐b‐poly[2‐(trimethylsilyloxy)ethylene methacrylate] (PSt‐b‐PTMSEMA) was synthesized using atom‐transfer radical polymerization (ATRP). The hydrolysis of PSt‐b‐PTMSEMA led to the formation of an amphiphilic block copolymer, polystyrene‐b‐poly(2‐hydroxylethyl methacrylate) (PSt‐b‐PHEMA), which was characterized by GPC and 1H‐NMR. TEM showed that the PSt‐b‐PHEMA formed a micelle, which is PSt as the core and PHEMA as the shell. Under appropriate conditions, the nickel or cobalt ion cause chemical reactions in these micelles and could be reduced easily. ESCA analysis showed that before reduction the metal existed as a hydroxide; after reduction, the metal existed as an oxide, and the metal content of these materials on the surface is more than that on the surface of the copolymer metal ion. XRD analysis showed that the metal existed as a hydroxide before reduction and existed as a metal after reduction. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2883–2891, 2002; DOI 10.1002/app.10278  相似文献   

5.
The effect of processing conditions on mechanical properties of poly(styrene‐b‐ethylene‐co‐butylene‐b‐styrene) (SEBS) and poly(2,6‐dimethy‐1,4‐phenylene oxide) (PPO) blends were investigated. Differential scanning calorimetry and small angle X‐ray scattering were used to study the miscibility and d‐spacing of the blends. The processing temperature plays an important role in mechanical properties. PPO works as filler and weakens mechanical properties when the processing temperature is below 230 °C. As the processing temperature exceeds 230 °C, PPO incorporates into the PS blocks of SEBS and the performance enhances with increasing temperature due to a better miscibility. The strong shear stress is beneficial to the dispersion of PPO into SEBS matrix and more PPO incorporates into PS blocks during melt processing, resulting in the better mechanical properties and a larger d‐spacing. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46123.  相似文献   

6.
Novel, well‐defined A4BA4 nonlinear block copolymers [poly(?‐caprolactone)]4block‐poly(propylene oxide)‐block‐[poly(?‐caprolactone)]4 (PCL4b‐PPO‐b‐PCL4) with eight arms were synthesized by ring‐opening polymerization. An investigation of melting and crystallization demonstrated that the values of crystallization temperature, melting temperature and degree of crystallinity of PCL4b‐PPO‐b‐PCL4 were enhanced with an increase of PCL chain length. At the same time, the crystallizability of PCL segments was influenced by the star‐shaped structure of the copolymers and the amorphous PPO segments in the copolymers. Furthermore, PCL4b‐PPO‐b‐PCL4 showed crystalline morphologies that were different from that of linear PCL according to polarized optical microscopy. Moreover, the hydrophilicity of the copolymers could be improved and adjusted by the star‐shaped structure and the alteration of the relative content of the PCL and PPO segments in the copolymers.© 2013 Society of Chemical Industry  相似文献   

7.
Poly ε‐caprolactone‐polystyrene block‐copolymers (PCL‐b‐PSt) were synthesized using a modified titanium catalyst as the dual initiator. Alcoholysis of Ti(OPr)4 by 4‐hydroxy 2,2,6,6 tetramethyl piperidinyl‐1‐oxyl (HO‐TEMPO) gave a bifunctional initiator Ti(OTEMPO)4. Poly ε‐caprolactone prepolymer end‐capped with the nitroxide group was first prepared by ring opening polymerization of ε‐caprolactone with this initiator at high conversion. The nitroxide‐end‐capped structure and molar mass (Mn) of the polymers were demonstrated by typical UV absorption band. This analytical technique indicates a near‐quantitative nitroxide functionality and a Mn in good agreement with size exclusion chromatography (SEC) ones. This polyester prepolymer was used to further initiate the radical polymerization with styrene and reach the block copolymers (PCL‐b‐PSt). All the prepolymers and block copolymers were characterized by SEC and NMR spectroscopy. Additionally, the preparation of star polymers bearing two kinds of arms (PCL and PSt) was envisaged and a preliminary result was given. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

8.
Polystyrene‐b‐poly(dimethylsiloxane)‐b‐polystyrene (Pst‐b‐PDMS‐b‐PSt) triblock copolymers were synthesized by atom transfer radical polymerization (ATRP). Commercially available difunctional PDMS containing vinylsilyl terminal species was reacted with hydrogen bromide, resulting in the PDMS macroinitiators for the ATRP of styrene (St). The latter procedure was carried out at 130°C in a phenyl ether solution with CuCl and 4, 4′‐di (5‐nonyl)‐2,2′‐bipyridine (dNbpy) as the catalyzing system. By using this technique, triblock copolymers consisting of a PDMS center block and polystyrene terminal blocks were synthesized. The polymerization was controllable; ATRP of St from those macroinitiators showed linear increases in Mn with conversion. The block copolymers were characterized with IR and 1H‐NMR. The effects of molecular weight of macroinitiators, macroinitiator concentration, catalyst concentration, and temperature on the polymerization were also investigated. Thermodynamic data and activation parameters for the ATRP are reported. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3764–3770, 2004  相似文献   

9.
Poly(n‐butyl methacrylate)‐b‐polystyrene‐b‐poly(n‐butyl methacrylate) (PBMA‐b‐PSt‐b‐PBMA) triblock copolymers were successfully synthesized by emulsion atom transfer radical polymerization (ATRP). Difunctional polystyrene (PSt) macroinitiators that contained alkyl chloride end‐groups were prepared by ATRP of styrene (St) with CCl4 as initiator and were used to initiate the ATRP of butyl methacrylate (BMA). The latter procedure was carried out at 85°C with CuCl/4,4′‐di (5‐nonyl)‐2,2′‐bipyridine (dNbpy) as catalyst and polyoxyethylene (23) lauryl ether (Brij35) as surfactant. Using this technique, triblock copolymers consisting of a PSt center block and PBMA terminal blocks were synthesized. The polymerization was nearly controlled, ATRP of St from those macroinitiators showed linear increases in the number average molecular weight (Mn) with conversion. The block copolymers were characterized with infrared (IR) spectroscopy, hydrogen‐1 nuclear magnetic resonance (1HNMR), and differential scanning calorimetry (DSC). The effects of the molecular weight of macroinitiators, concentration of macroinitiator, catalyst, emulsion, and temperature on the polymerization were also investigated. Thermodynamic data and activation parameters for the ATRP were also reported. POLYM. ENG. SCI., 45:1508–1514, 2005. © 2005 Society of Plastics Engineers  相似文献   

10.
The combination of radical‐promoted cationic polymerization, atom transfer radical polymerization (ATRP) and click chemistry was employed for the efficient preparation of poly(cyclohexene oxide)‐block‐polystyrene (PCHO‐b‐PSt). Alkyne end‐functionalized poly(cyclohexene oxide) (PCHO‐alkyne) was prepared by radical‐promoted cationic polymerization of cyclohexene oxide monomer in the presence of 1,2‐diphenyl‐2‐(2‐propynyloxy)‐1‐ethanone (B‐alkyne) and an onium salt, namely 1‐ethoxy‐2‐methylpyridinium hexafluorophosphate, as the initiating system. The B‐alkyne compound was synthesized using benzoin photoinitiator and propargyl bromide. Well‐defined bromine‐terminated polystyrene (PSt‐Br) was prepared by ATRP using 2‐oxo‐1,2‐diphenylethyl‐2‐bromopropanoate as initiator. Subsequently, the bromine chain end of PSt‐Br was converted to an azide group to obtain PSt‐N3 by a simple nucleophilic substitution reaction. Then the coupling reaction between the azide end group in PSt‐N3 and PCHO‐alkyne was performed with Cu(I) catalysis in order to obtain the PCHO‐b‐PSt block copolymer. The structures of all polymers were determined. Copyright © 2010 Society of Chemical Industry  相似文献   

11.
Hexa‐armed star‐shaped poly(ε‐caprolactone)‐block‐poly(L ‐lactide) (6sPCL‐b‐PLLA) with dipentaerythritol core were synthesized by a two‐step ring‐opening polymerization. GPC and 1H NMR data demonstrate that the polymerization courses are under control. The molecular weight of 6sPCLs and 6sPCL‐b‐PLLAs increases with increasing molar ratio of monomer to initiator, and the molecular weight distribution is in the range of 1.03–1.10. The investigation of the melting and crystallization demonstrated that the values of crystallization temperature (Tc), melting temperature (Tm), and the degree of crystallinity (Xc) of PLLA blocks are increased with the chain length increase of PLLA in the 6sPCL‐b‐PLLA copolymers. On the contrary, the crystallization of PCL blocks dominates when the chain length of PLLA is too short. According to the results of polarized optical micrographs, both the spherulitic growth rate (G) and the spherulitic morphology are affected by the macromolecular architecture and the length of the block chains. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

12.
Poly(styrene‐co‐methacrylic acid) (PSMA) and poly(styrene‐co‐4‐vinylpyridine) (PS4VP) of different compositions were prepared and characterized. The phase behavior of these copolymers as binary PSMA/PS4VP mixtures or with poly(2,6‐dimethyl‐1,4‐phenylene oxide) (PPO) as PPO/PSMA or PPO/PS4VP and PPO/PSMA/PS4VP ternary blends was investigated by differential scanning calorimetry (DSC). This study showed that PPO was miscible with PS4VP containing up to 15 mol % 4‐vinylpyridine (4VP) but immiscible with PS4VP‐30 (where the number following the hyphen refers to the percentage 4VP in the polymer) and PSMA‐20 (where the number following the hyphen refers to the percentage methacrylic acid in the polymer) over the entire composition range. To examine the morphology of the immiscible blends, scanning electron microscopy was used. Because of the hydrogen‐bonding specific interactions that occurred between the carboxylic groups of PSMA and the pyridine groups of PS4VP, chloroform solutions of PSMA‐20 and PS4VP‐15 formed interpolymer complexes. The obtained glass‐transition temperatures (Tg's) of the PSMA‐20/PS4VP‐15 complexes were found to be higher than those calculated from the additivity rule. Although, depending on the content of 4VP, the shape of the Tg of the PPO/PS4VP blends changed from concave to S‐shaped in the case of the miscible blends, two Tg were observed with each PPO/PS4VP‐30 and PPO/PS4VP‐40 blend. The thermal stability of the PSMA‐20/PS4VP‐15 interpolymer complexes was studied by thermogravimetry. On the basis of the obtained results, the phase behavior of the ternary PPO/PSMA‐20/PS4VP‐15 blends was investigated by DSC. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

13.
Diblock copolymers, poly[(10‐hydroxydecanoic acid)‐block‐styrene] (PHDA‐b‐PSt), were synthesized by combining enzymatic condensation polymerization of HDA and atom transfer radical polymerization (ATRP) as of St PHDA was first obtained via enzymatic condensation polymerization catalyzed by Novozyme‐435. Subsequently, one terminus of the PHDA chains was modified by reaction with α‐bromopropionyl bromide and the other terminus was protected by chlorotrimethylsilane. The resulting monofunctional macroinitiator was used subsequently in ATRP of St using CuCl/2,2′‐bipyridine as the catalyst system to afford diblock copolymers including biodegradable PHDA blocks and well‐defined PSt blocks. Polymeric nanospheres were prepared by self‐assembly of the PHDA‐b‐PSt diblock copolymers in aqueous medium. Copyright © 2008 Society of Chemical Industry  相似文献   

14.
Different poly(methyl methacrylate/n‐butyl acrylate)/poly(n‐butyl acrylate/methyl methacrylate) [P(BA/MMA)/P(MMA/BA)] and poly(n‐butyl acrylate/methyl methacrylate)/polystyrene [P(BA/MMA)/PSt] core‐shell structured latexes were prepared by emulsifier‐free emulsion polymerization in the presence of hydrophilic monomer 3‐allyloxy‐2‐hydroxyl‐propanesulfonic salt (AHPS). The particle morphologies of the final latexes and dynamic mechanical properties of the copolymers from final latexes were investigated in detail. With the addition of AHPS, a latex of stable and high‐solid content (60 wt %) was prepared. The diameters of the latex particles are ~0.26 μm for the P(BA/MMA)/P(MMA/BA) system and 0.22–0.24 μm for the P(BA/MMA)/PSt system. All copolymers from the final latexes are two‐phase structure polymers, shown as two glass transition temperatures (Tgs) on dynamic mechanical analysis spectra. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 3078–3084, 2002  相似文献   

15.
This article reports the synthesis and characterization of four arm star‐shaped poly(styrene‐b‐[(butadiene)1?x‐(ethylene‐co‐butylene)x]‐b‐styrene) (SBEBS) copolymers. A series of SBEBS copolymers with different compositions of the elastomeric block were produced by hydrogenating a given poly(styrene‐b‐butadiene‐b‐styrene) (SBS) copolymer using a catalyst prepared from bis(η5‐cyclopentadienyl)titanium(IV) dichloride and n‐butyllithium. The characterization was accomplished by proton nuclear magnetic resonance spectroscopy (1H NMR), infrared spectroscopy (FTIR), gel permeation chromatography (GPC), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and thermogravimetric analysis (TGA). The results indicate that there is a selective saturation of the polybutadiene block over the polystyrene block; this selectivity was determined by the Ti/Li molar ratio and the concentration of Ti. It was observed that the saturation rate of the 1,2‐vinyl was higher than that of the 1,4‐trans and 1,4‐cis poly(butadiene)‐b isomers. The DSC and DMA results indicate that the degree of hydrogenation had a profound effect on the polymer's relaxation behavior. All samples exhibited a biphasic system behavior with two distinct transitions corresponding to the elastomeric and polystyrene blocks. SBEBS copolymers with higher saturation levels (>33%) exhibited a crystalline character. The TGA results indicated a characteristic weight loss temperature in all samples, with slightly higher thermal degradation stabilities in the materials with higher degrees of saturation. POLYM. ENG. SCI., 54:2332–2344, 2014. © 2013 Society of Plastics Engineers  相似文献   

16.
A series of polystyrene‐b‐polybutadiene (PSt‐b‐PBd) block copolymers with various chain lengths and compositions were synthesized by sequential living anionic polymerization and then converted into the corresponding polystyrene‐b‐poly(ethylene‐co‐butene) (PSt‐b‐PEB) block copolymers through the selective hydrogenation of unsaturated polybutadiene segments. Noncatalytic hydrogenation was carried out with diimide as the hydrogen source. The microstructures of PSt‐b‐PBd and PSt‐b‐PEB were investigated with gel permeation chromatography, 1H‐NMR, 13C‐NMR, Fourier transform infrared, and differential scanning calorimetry. The results showed that the hydrogenation reaction was conducted successfully and that the chain length and molecular weight distribution were not altered by hydrogenation. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 2632–2638, 2006  相似文献   

17.
The toughness behavior of PPO–SAN blends with the modifier poly(styrene‐block‐butadiene) (SBSB) and with poly(styrene‐block‐butadiene‐block‐methyl methacrylate) copolymers (SBM) under impact loading conditions has been investigated. The observed morphology of blends compatibilized with SBM, in which the rubber phase discontinuously accumulated at the PPO–SAN interface, correlated with about 20 times higher energy dissipation up to maximum force and about seven times higher deformation capacity compared to pure PPO–SAN blends. In contrast, the fracture behavior of the SBSB‐modified blends was not as strongly dependent on the rubber content. It is especially noteworthy that although the SBM modification resulted in a strong increase in toughness of the PPO–SAN blends, no decrease in stiffness could be found with up to 15% rubber additions. The values of Young's moduli remained at the same high level of the nonmodified material. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 2037–2045, 2000  相似文献   

18.
5,10,15,20‐tetra(4‐hydroxyphenyl)porphyrin (THPP) was synthesized by the condensation of pyrrole with 4‐hydroxybenzaldehyde in the presence of solvent (propionic acid). Subsequently, the resulting THPP was converted to a tetrafunctional star‐shaped macroinitiator (porphyrin‐Br4) by esterification of it with 2‐bromopropanoyl bromide, and then atom transfer radical polymerization (ATRP) of styrene was conducted at 110°C with CuCl/2,2′‐bipyridine as the catalyst system. The resulting product was reacted with NBS to obtain star‐shaped initiator porphyrin‐(PSt‐Br)4, which was used the following ATRP of the GMA to synthesize star–comb‐shaped grafted polymer porphyrin‐(PSt‐g‐PGMA)4. The number molecular weight was 2.3 × 104 g/mol, and the dispersity was narrow (Mw/Mn = 1.32). The structure of the polymers was investigated by NMR, UV–vis, IR, and GPC measurement. The self‐assembly behavior of the polymer porphyrin‐(PSt‐g‐PGMA)4 was studied by DLS and AFM. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

19.
The ability of atom transfer radical polymerization (ATRP) in the sequential synthesis of triblock copolymers was examined using Cu(I)Cl/2,2′‐bipyridine catalysis at 110°C in toluene, starting from PMMA macroinitiators terminated with the C‐Br group. The PMMAs were prepared by living anionic or group transfer polymerization (GTP), followed by bromination of the respective active site with Br2 or N‐bromosuccinimide (NBS). The yield of the terminal bromination in the products of both living polymerizations was 60–64% at best, compared with the yield of the bromination of 1‐methoxy‐(1‐trimethylsilyloxy)prop‐1‐ene (a model of the GTP active site) with NBS, as found by 1H‐NMR. The PMMA macroinitiators prepared were utilized to start the sequential ATRP, finally affording PMMA‐b‐PBuA‐b‐PSt (Mn 69,100), PMMA‐b‐PSt‐b‐PBuA (Mn 21,300) and PMMA‐b‐PSt‐b‐PMMA (Mn 35,200), which have not yet been synthesized by ATRP. After the second block has been formed, the Br‐unterminated part of PMMA macroinitiator was removed by extraction or repeated precipitation. In the third (last) sequence polymerization, induction periods were observed. The first two triblock copolymers were free of precursors and have Mw/Mn values 1.5–1.6 (SEC). In the course of the last step of PMMA‐b‐PSt‐b‐PMMA synthesis, the content of the PMMA‐b‐PSt precursor slowly decreased with increasing MMA conversion. Still, at ≈90% MMA conversion, about 10–15% of the precursor remained in the product. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 3514–3522, 2001  相似文献   

20.
Poly(n‐butyl methacrylate) (PBMA)‐b‐polystyrene (PSt) diblock copolymers were synthesized by emulsion atom transfer radical polymerization (ATRP). PBMA macroinitiators that contained alkyl bromide end groups were obtained by the emulsion ATRP of n‐butyl methacrylate with BrCH3CHCOOC2H5 as the initiator; these were used to initiate the ATRP of styrene (St). The latter procedure was carried out at 85°C with CuCl/4,4′‐di(5‐nonyl)‐2,2′‐bipyridine as the catalyst and polyoxyethylene(23) lauryl ether as the surfactant. With this technique, PBMA‐b‐PSt diblock copolymers were synthesized. The polymerization was nearly controlled; the ATRP of St from the macroinitiators showed linear increases in number‐average molecular weight with conversion. The block copolymers were characterized with IR spectroscopy, 1H‐NMR, and differential scanning calorimetry. The effects of the molecular weight of the macroinitiators, macroinitiator concentration, catalyst concentration, surfactant concentration, and temperature on the polymerization were also investigated. Thermodynamic data and activation parameters for the ATRP are also reported. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 2123–2129, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号