首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polypropylene (PP) is widely used in many fields, such as automobiles, medical devices, office equipment, pipe, and architecture. However, its high brittle transformation temperature, low mechanical strength, dyeing properties, antistatic properties, and poor impact resistance, considerably limit its further applications. Nano‐ZnO treated by KH550 coupling agent and glass fibers (GFs) were introduced in order to improve the mechanical performance and flowability of PP in this research. The crystallization behavior and microstructure of nano‐ZnO/GFs/PP hybrid composites were analyzed by differential scanning calorimetry, transmission electron microscopy, and scanning electron microscopy. The effect of crystallization behavior on the mechanical properties of the nanocomposites was investigated and analyzed. The results indicated that nano‐ZnO surface‐coupled by KH550 could be uniformly dispersed in the PP matrix. The incorporation of nano‐ZnO and GFs resulted in increases of the crystallization temperature and crystallization rate of PP and a decrease of the crystallization degree. The introduction of nano‐ZnO and GFs also enhanced the tensile strength and impact toughness of the hybrid composites and improved their fluidity. Composites containing 2% of nano‐ZnO and 40% of GFs possessed the optimum mechanical properties. J. VINYL ADDIT. TECHNOL., 2010. © 2010 Society of Plastics Engineers  相似文献   

2.
Combined effect of α‐nucleating agent (NA) sodium 2,2′‐methylene‐bis(4,6‐di‐tert‐butylphenyl) phosphate (NA11) and nanoclay (NC) on the mechanical properties and crystallization behavior of isotactic polypropylene (iPP) was investigated by mechanical testing, wide‐angle X‐ray scattering (WAXD), differential scanning calorimetry (DSC), polarized optical microscopy (POM), and scanning electron microscopy (SEM). The mechanical testing results indicated that the separate addition of NA11 and NC only increased the stiffness of iPP while the combined addition of NA11, NC, and maleic anhydride grafted polypropylene (PP‐g‐MA) simultaneously improved stiffness and toughness of iPP. Compared to pure iPP, the tensile strength, the flexural modulus, and impact strength of iPP composites increased 9.7, 38.6, and 42.9%, respectively. The result indicated good synergistic effects of NC, NA11, and PP‐g‐MA in improving iPP mechanical properties. WAXD patterns revealed NA11, and NC only induced the α‐crystals of iPP. SEM micrograph showed that the PP‐g‐MA could effectively improve the dispersing of NC in iPP. Finally, the nonisothermal crystallization kinetics of neat iPP and PP nanocomposites was described by Caze method. The result indicated that the addition of NA overcame the shortcoming of low crystallization rate of NC nanocomposites and maintained the excellent mechanical properties, which is another highlight of the combined addition of NAs and nanoclay. Meanwhile, the result showed that nuclei formation and spherulite growth of iPP were affected by the presence of NA and nanoclay. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

3.
The microstructure and mechanical properties of polypropylene (PP)/OMMT binary nanocomposites and PP/styrene‐6‐(ethylene‐co‐butylenes)‐6‐styrene triblock copolymer (SEBS)/OMMT ternary nanocomposites were investigated using X‐ray diffraction (XRD), transmission electron microscopy (TEM), and rheology and electromechanical testing machine. The results show that the organoclay layers are mainly intercalated and partially exfoliated in the PP‐based nanocomposites. The additions of SEBS and OMMT have no significant effect on the crystallization behavior of PP. At the same time, it can be concluded that the polymer chains of PP and SEBS have intercalated into the organoclay layers and increase the gallery distance after blending process based on the analytical results from TEM, XRD, and rheology, which result in the form of a percolated nanostructure in the PP‐based nanocomposites. The results of mechanical properties show that SEBS filler greatly improve the notched impact strength of PP, but with the sacrifice of strength and stiffness. OMMT can improve the strength and stiffness of PP and slightly enhance the notched impact strength of PP/PP‐g‐MA. In comparison with neat PP, PP/OMMT, and PP/SEBS binary composites, notched impact toughness of the PP/SEBS/OMMT ternary composites significantly increase. Moreover, the stiffness and strength of PP/SEBS/OMMT ternary nanocomposites are slightly enhanced when compared with neat PP. It is believed that the synergistic effect of both SEBS elastomer and OMMT nanoparticles account for the balanced mechanical performance of the ternary nanocomposites. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

4.
Polypropylene/Pine apple leaf fiber (PP/PALF)‐reinforced nanocomposites were fabricated using melt blending technique in a twin‐screw extruder (Haake Rheocord 9000). Variation in mechanical properties, crystallization behavior, water absorption, and thermal stability with the addition of nanoclay in PP/PALF composites were investigated. It was observed that the tensile, flexural, and impact properties of PP increase with the increase in fiber loading from 10 to 30 wt %. Composites prepared using 30 wt % PALF and 5 wt % MA‐g‐PP exhibited optimum mechanical performance with an increase in tensile strength to 31%, flexural strength to 45% when compared with virgin PP. Addition of nanoclay results in a further increase in tensile and flexural strength of PP/PALF composites to 20 and 24.3%, which shows intercalated morphology. However, addition of nanoclay does not show any substantial increase in impact strength when compared with PP/PALF composites. Dynamic mechanical analysis tests revealed an increase in storage modulus (E′) and damping factor (tan δ), confirming a strong influence between the fiber/nanoclay and MA‐g‐PP. Differential scanning calorimetry, thermogravimetric analysis thermograms also showed improved thermal properties when compared with the virgin matrix. TEM micrographs also showed few layers of agglomerated clay galleries along with mixed nanomorphology in the nanocomposites. Wide angle X‐ray diffraction studies indicated an increase in d‐spacing from 22.4 Å in Cloisite 20A to 40.1 Å in PP/PALF nanocomposite because of improved intercalated morphology. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

5.
Polypropylene (PP) and polypropylene/polypropylene‐g‐maleic anhydride/ organomontmorillonite (PP/PP‐g‐MA/OMMT) nanocomposites were modified with 0.05 to 0.3% (w/w) of the aryl amide β‐nucleator to promote the formation of hexagonal crystal modification (β‐phase) during melt crystallization. The nonisothermal crystallization behavior of PP, PP/PP‐g‐MA/OMMT and β‐nucleated PP/PP‐g‐MA/OMMT nanocomposites were studied by means of differential scanning calorimetry. Structure‐property relationships of the PP nanocomposites prepared by melt compounding were mainly focused on the effect and quantity of the aryl amide nucleator. The morphological observations, obtained from scanning electron microscopy, transmission electron microscopy and X‐ray diffraction analyses are presented in conjunction with the thermal, rheological, and mechanical properties of these nanocomposites. Chemical interactions in the nanocomposites were observed by FT‐IR. It was found that the β‐crystal modification affected the thermal and mechanical properties of PP and PP/PP‐g‐MA/OMMT nanocomposites, while the PP/PP‐g‐MA/OMMT nanocomposites of the study gained both a higher impact strength (50%) and flexural modulus (30%) compared to that of the neat PP. β‐nucleation of the PP/PP‐g‐MA/OMMT nanocomposites provided a slight reduction in density and some 207% improvement in the very low tensile elongation at break at 92% beta nucleation. The crystallization peak temperature (Tcp) of the PP/PP‐g‐MA/OMMT nanocomposite was slightly higher (116°C) than the neat PP (113°C), whereas the β‐nucleation increased the crystallization temperature of the PP/PP‐g‐MA/OMMT/aryl amide to 128°C, which is of great advantage in a commercial‐scale mold processing of the nanocomposites with the resulting lower cycle times. The beta nucleation of PP nanocomposites can thus be optimized to obtain a better balance between thermal and mechanical properties. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   

6.
This study describes the reinforcement effect of surface modified mullite fibers on the crystallization, thermal stability, and mechanical properties of polypropylene (PP). The nanocomposites were developed using polypropylene‐grafted‐maleic anhydride (PP‐g‐MA) as compatibilizer with different weight ratios (0.5, 1.0, 1.5, 2.5, 5.0, and 10.0 wt %) of amine functionalized mullite fibers (AMUF) via solution blending method. Chemical grafting of AMUF with PP‐g‐MA resulted in enhanced filler dispersion in the polymer as well as effective filler‐polymer interactions. The dispersion of nanofiller in the polymer matrix was identified using scanning electron microscopy (SEM) elemental mapping and transmission electron microscopy (TEM) analysis. AMUF increased the Young's modulus of PP in the nanocomposites up to a 5 wt % filler content, however, at 10 wt % loading, a decrease in the modulus resulted due to agglomeration of AMUF. The impact strength of PP increased simultaneously with the modulus as a function of AMUF content (up to 5 wt %). The mechanical properties of PP‐AMUF nanocomposites exhibited improved thermal performance as compared to pure PP matrix, thus, confirming the overall potential of the generated composites for a variety of structural applications. The mechanical properties of 5 wt % of AMUF filled PP nanocomposite were also compared with PP nanocomposites generated with unmodified MUF and the results confirmed superior mechanical properties on incorporation of modified filler. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43725.  相似文献   

7.
Eighty/twenty polypropylene (PP)/styrene–ethylene–butylene–styrene (SEBS) and 80/20 PP/maleated styrene–ethylene–butylene–styrene (SEBS‐g‐MA) blends reinforced with 30 wt % short glass fibers (SGFs) were prepared by extrusion and subsequent injection molding. The influence of the maleic anhydride (MA) functional group grafted to SEBS on the properties of SGF/SEBS/PP hybrid composites was studied. Tensile and impact tests showed that the SEBS‐g‐MA copolymer improved the yield strength and impact toughness of the hybrid composites. Extensive plastic deformation occurred at the matrix interface layer next to the fibers of the SGF/SEBS‐g‐MA/PP composites during impact testing. This was attributed to the MA functional group, which enhanced the adhesion between SEBS and SGF. Differential scanning calorimetry measurements indicated that SEBS promoted the crystallization of PP spherulites by acting as active nucleation sites. However, the MA functional group grafted to SEBS retarded the crystallization of PP. Finally, polarized optical microscopy observations confirmed the absence of transcrystallinity at the glass‐fiber surfaces of both SGF/SEBS/PP and SGF/SEBS‐g‐MA/PP hybrid composites. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1303–1311, 2002  相似文献   

8.
Nylon 6 (Ny)/polypropylene (PP)/maleated polypropylene (PP‐g‐MA)/organoclay/wollastonite composites were prepared by melt processing. The polymers' composition was kept constant ([70PP/30Ny]/4PP‐g‐MA). Melt compounding was conducted using a twin‐screw extruder in three different methods: (1) simultaneous incorporation of the components into the compounding equipment, (2) preparation of [Ny6/clay] concentrate, and then in a second step, mixing the other components with the concentrate, and (3) mixing of PP with wollastonite and clay followed by the addition of Ny6 and PP‐g‐MA in the second step. Injection‐molded specimens were characterized in tension, scanning electron microscopy, X‐ray diffraction (XRD), and differential scanning calorimetry. The sequence of component addition greatly influences the structure and properties of the composites. Enhanced mechanical properties were achieved when the two‐step mixing procedure was used for the PP/Ny6/PP‐g‐MA/clay system (method 2) and also for the PP/Ny6/PP‐g‐MA/clay/wollastonite system (method 3). The XRD pattern of the PP/Ny6/PP‐g‐MA/clay nanocomposites produced by the two‐step mixing method does not show a characteristic basal reflection of the pristine organoclay, indicating a predominately exfoliated structure of clay. POLYM. COMPOS., 28:417–424, 2007. © 2007 Society of Plastics Engineers  相似文献   

9.
BACKGROUND: Polymer/clay (silicate) systems exhibit great promise for industrial applications due to their ability to display synergistically advanced properties with relatively small amounts of clay loads. The effects of various compatibilizers on styrene–ethylene–butylene–styrene block copolymer (SEBS)/clay nanocomposites with various amounts of clay using a melt mixing process are investigated. RESULTS: SEBS/clay nanocomposites were prepared via melt mixing. Two types of maleated compatibilizers, styrene–ethylene–butylene–styrene block copolymer grafted maleic anhydride (SEBS‐g‐MA) and polypropylene grafted maleic anhydride (PP‐g‐MA), were incorporated to improve the dispersion of various amounts of commercial organoclay (denoted as 20A). Experimental samples were analyzed using X‐ray diffraction and transmission electron microscopy. Thermal stability was enhanced through the addition of clay with or without compatibilizers. The dynamic mechanical properties and rheological properties indicated enhanced interaction for the compatibilized nanocomposites. In particular, the PP‐g‐MA compatibilized system conferred higher tensile strength or Young's modulus than the SEBS‐g‐MA compatibilized system, although SEBS‐g‐MA seemed to further expand the interlayer spacing of the clay compared with PP‐g‐MA. CONCLUSION: These unusual results suggest that the matrix properties and compatibilizer types are crucial factors in attaining the best mechanical property performance at a specific clay content. Copyright © 2007 Society of Chemical Industry  相似文献   

10.
Preparation and properties of polypropylene/org-attapulgite nanocomposites   总被引:4,自引:0,他引:4  
Lihua Wang  Jing Sheng 《Polymer》2005,46(16):6243-6249
Polypropylene (PP)/org-attapulgite (ATP) nanocomposites were prepared by melt blending in a mixer apparatus. Org-attapulgite was attained by silane coupling agent modification first and then graft-polymerization with butyl acrylate. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to assess the clay morphology and the dispersion of the org-attapulgite, respectively. The changes of crystalline structure for PP nanocomposites were characterized by X-ray diffraction (XRD). The mechanical properties of PP/attapulgite nanocomposites were studied through tensile and impact tests. The thermal and dynamic mechanical properties were characterized by differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). The strength and stiffness of PP/org-ATP nanocomposites were both improved significantly in the presence of organic attapulgite. In addition, the incorporation of org-ATP also gave rise to an increase of the storage modulus and the changes of the glass transition temperature for PP composites. TEM and XRD results revealed the addition of attapulgite did not change the crystal structure of PP, however org-attapulgite acted as nucleating agents for the crystallization of PP.  相似文献   

11.
To investigate the effect of interfacial interaction on the crystallization and mechanical properties of polypropylene (PP)/nano‐CaCO3 composites, three kinds of compatibilizers [PP grafted with maleic anhydride (PP‐g‐MA), ethylene–octene copolymer grafted with MA (POE‐g‐MA), and ethylene–vinyl acetate copolymer grafted with MA (EVA‐g‐MA)] with the same polar groups (MA) but different backbones were used as compatibilizers to obtain various interfacial interactions among nano‐CaCO3, compatibilizer, and PP. The results indicated that compatibilizers encapsulated nano‐CaCO3 particles, forming a core–shell structure, and two interfaces were obtained in the compatibilized composites: interface between PP and compatibilizer and interface between compatibilizer and nano‐CaCO3 particles. The crystallization and mechanical properties of PP/nano‐CaCO3 composites were dependent on the interfacial interactions of these two interfaces, especially the interfacial interaction between PP and compatibilizer. The good compatibility between PP chain in PP‐g‐MA and PP matrix improved the dispersion of nano‐CaCO3 particles, favored the nucleation effect of nano‐CaCO3, increased the tensile strength and modulus, but reduced the ductility and impact strength of composites. The partial compatibility between POE in POE‐g‐MA and PP matrix had little effect on crystallization and mechanical properties of PP/nano‐CaCO3 composites. The poor compatibility between EVA in EVA‐g‐MA and PP matrix retarded the nucleation effect of nano‐CaCO3, and reduced the tensile strength, modulus, and impact strength. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

12.
Polypropylene (PP) is the second most widespread commodity polyolefin. Even a small quantity of inorganic component is sufficient to achieve significant improvement of stiffness, strength, thermal stability, biodegradability, etc. The major drawback of inorgano‐organic composite materials is insufficient compatibility of the PP matrix with inorganic filler. A suitable choice of the layered double hydroxide‐modifying anion opens a possibility to obtain PP‐inorganic nanocomposites without a need to use compatibilizers like maleic anhydride grafted PP. The nanocomposites were prepared by melt blending in a twin‐screw mini‐extruder and characterized by dynamic mechanical thermal analysis, and electron microscopy. Nonpolar PP matrix mix uniformly with clay organophilized with functionalized surfactant acids, giving rise to composites with improved thermo‐mechanical properties. Influences of the anionic modifier and the filler content (2 or 5% w/w) on mechanical properties and nanoscale structure of the composites are discussed. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2429–2438, 2013  相似文献   

13.
Natural fiber‐reinforced nanocomposites based on polypropylene/nanoclay/banana fibers were fabricated by melt mixing in a twin‐screw extruder followed by compression molding in this current study. Maleic anhydride polypropylene copolymer (MA‐g‐PP) was used as a compatibilizer to increase the compatibility between the PP matrix, clay, and banana fiber to enhance exfoliation of organoclay and dispersion of fibers into the polymer matrix. Variation in mechanical, thermal, and physico‐mechanical properties with the addition of banana fiber into the PP nanocomposites was investigated. It was observed that 3 wt% of nanoclay and 5 wt% of MA‐g‐PP within PP matrix resulted in an increase in tensile and flexural strength by 41.3% and 45.6% as compared with virgin PP. Further, incorporation of 30 wt% banana fiber in PP nanocomposites system increases the tensile and flexural strength to the tune of 27.1% and 15.8%, respectively. The morphology of fiber reinforced PP nanocomposites has been examined by using scanning electron microscopy and transmission electron microscopy. Significant enhancement in the thermal stability of nanocomposites was also observed due to the presence of nanoclay under thermogravimetric analysis. Dynamic mechanical analysis tests revealed an increase in storage modulus (E′) and damping factor (tan δ), conforming the strong interaction between nanoclay/banana fiberand MA‐g‐PP in the fiber‐reinforced nanocomposites systems. POLYM. COMPOS., © 2011 Society of Plastics Engineers.  相似文献   

14.
This work discloses a novel one‐pot preparation method of polypropylene (PP)/clay nanocomposites with high degree of clay delamination and improved thermal, mechanical and rheological properties. The in situ simultaneous synthesis of carboxylate clay from native clay and ionomer of PP‐graft maleic anhydride (PP‐g‐MA) through trihydrate sodium acetate addition, combined with water injection in the extrusion process, appears to be a valuable alternative to the use of organoclay for producing PP/PP‐g‐MA/clay nanocomposites. The influence of PP‐g‐MA graft content, and of its ionomer form, onto the clay dispersion has been especially investigated. PP‐g‐MA of low graft content is compared to a home‐made highly grafted PP‐g‐MA synthesized in the presence of N‐bromosuccinimide (NBS). The nanocomposites prepared by combining the use of NBS‐mediated PP‐g‐MA, trihydrate sodium acetate and water injection exhibit the highest clay dispersion. Thermal, rheological, and mechanical properties of the nanocomposites have been measured. POLYM. COMPOS., 36:644–650, 2015. © 2014 Society of Plastics Engineers  相似文献   

15.
A series of blends of polypropylene (PP)–polyamide‐6 (PA6) with either reactive polyethylene–octene elastomer (POE) grafted with maleic anhydride (POE‐g‐MA) or with maleated PP (PP‐g‐MA) as compatibilizers were prepared. The microstructures and mechanical properties of the blends were investigated by means of tensile and impact testing and by scanning electron microscopy and transmission electron microscopy. The results indicated that the miscibility of PP–PA6 blends was improved with the addition of POE‐g‐MA and PP‐g‐MA. For the PP/PA6/POE‐g‐MA system, an elastic interfacial POE layer was formed around PA6 particles and the dispersed POE phases were also observed in the PP matrix. Its Izod impact strength was four times that of pure PP matrix, whilst the tensile strength and Young's modulus were almost unchanged. The greatest tensile strength was obtained for PP/PA6/PP‐g‐MA blend, but its Izod impact strength was reduced in comparison with the pure PP matrix. © 2002 Society of Chemical Industry  相似文献   

16.
Polypropylene (PP)/clay nanocomposites prepared by melt blending technique using different percentages of clay with and without maleic anhydride grafted PP (MA‐PP) were studied. The intercalated and exfoliated structure of nanocomposites was characterized by X‐Ray Diffraction (XRD) and transmission electron microscopy (TEM). Because of the typical intercalated and exfoliated structure, the tensile modulus of the nanocomposites were improved significantly as compared to virgin PP. The viscoelastic behavior of the nanocomposites was studied by dynamical mechanical analysis (DMA) and the results showed that with the addition of treated clay to PP there was substantial improvement in storage modulus increases. The thermal stability and crystallization of the PP nanocomposites as studied by differential scanning calorimeter (DSC) and thermo gravimetric analysis (TGA) were also improved significantly compared to PP. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

17.
In the present investigation, nanocomposites of polypropylene (PP)‐montmorillonite (MMT) clay were prepared by a single‐step compounding method to study the influence of hyperbranched polyester (HBPE) on rheological and mechanical properties of PP composites in the presence of a compatibilizer. In service of this objective, polyvinylchloride‐grafted‐maleic anhydride (PP‐g‐MA) was used as a compatibilizer for hydrophobic PP and hydrophilic clay. Rheological property in terms of melt viscosity was examined by a Brabender torque rheometer. The composite's morphology was studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), whereas the dispersion state of nanoparticles in the PP matrix was studied by X‐ray diffraction (XRD). The thermal behavior of nanocomposites was examined by differential scanning calorimetry (DSC). The analysis of results confirmed that the interactions among both additives significantly influenced the morphology, rheology, and thermomechanical properties of the nanocomposites. J. VINYL ADDIT. TECHNOL., 22:72–79, 2016. © 2014 Society of Plastics Engineers  相似文献   

18.
A series of polypropylene (PP) nanocomposites containing 2, 4, and 6 wt % of an organophilic montmorillonite clay was prepared via direct melt mixing in the presence of maleic anhydride grafted polypropylene (PP‐g‐MAH) as compatibilizing agent. Microstructure characterization was performed by X‐ray diffraction analysis. Nanocomposites exhibited a 15 and 22% enhancement in tensile modulus and impact strength, respectively. The heat deflection temperature of PP nanocomposites was 36°C greater than for pure PP. Thermal and mechanical properties of nanocomposites were compared to properties of traditional PP‐talc and PP‐glass fiber composites. The results showed that the properties of nanocomposites improved compared to ordinary polypropylene composites. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

19.
In this work, polypropylene/clay nanocomposites with 0.5, 1, 3, and 5 wt % of montmorillonite (MMT) (unmodified clay) were prepared by intensive mixing at 50 rpm and 10 min of mixing. For the highest clay content (5 wt %), the initial materials or the processing conditions were changed to study their independent effect. On one hand, 10 wt % of PP‐graft‐MA (PP‐g‐MA) was incorporated or MMT was replaced by organomodified clays (C10A and C30B). On the other side, for the initial system, the speed of rotation (100 and 150 rpm) and the mixing time (5 and 15 min) were altered. In all cases, the state of the clay inside the matrix (DRX), the degree of dispersion in the micro (SEM) and nano (TEM) scales, and the rheological and mechanical properties were analyzed. It was found that the stiffness increased with clay content, whereas tensile and impact strength did not significantly change. Although intercalated structures were observed in the composites with unmodified clay, in the composites with modified clay or PP‐g‐MA, improved dispersion of clay in PP was found. The mechanical properties increased accordingly. The degree of dispersion of the filler in the matrix appeared to be unaffected by the changes in the processing conditions introduced. Finally, the elastic modulus was modeled by using an effective filler‐parameter model based on Halpin–Tsai equations, which also allowed estimating the relative degree of dispersion. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

20.
Maleic anhydride grafted polypropylene (PP‐g‐MA) and organically modified clay composites were prepared in a plasticorder. PP‐g‐MAs, including Polybond PB3150, Polybond PB3200, Polybond PB3000, and Epolene E43, with a wide range of maleic anhydride (MA) concentrations and molecular weights were used. The structure was investigated with X‐ray diffraction (XRD) and transmission electron microscopy (TEM). PP‐g‐MA compatibilizers gave rise to similar degrees of dispersion beyond the weight ratio of 3/1, with the exception of E43, which had the highest MA content and the lowest molecular weight. The thermal instability and high melt index were responsible for the ineffective modification by E43. Furthermore, PP‐g‐MA with a lower molecular weight and a higher melt index had to be compounded at a lower mixing temperature to achieve a reasonable level of torque for clay dispersion. Polypropylene/organoclay nanocomposites were then modified with different levels of PP‐g‐MA compatibilizers with a twin‐screw extruder. The polypropylene/E43/clay system, as shown by XRD patterns and TEM observations, yielded the poorest clay dispersion of the compatibilizers under investigation. The curves of the relative complex viscosity also revealed a systematic trend with the extent of exfoliation and showed promise for quantifying the hybrid structure of the nanocomposites. The mechanical properties and thermal stability were determined by dynamical mechanical analysis and thermogravimetric analysis, respectively. Although PP‐g‐MA with a lower molecular weight led to better clay dispersion in the polypropylene nanocomposites, it caused deterioration in both the mechanical and thermal properties of the hybrid systems. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1667–1680, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号