首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A convenient method of preparing chelating fiber with amine groups on the fiber surface was developed. The precursor polymer of Poly(N‐vinylformamide/acrylonitrile) (P(NVF/AN)) was synthesized via solution polymerization, using N‐vinylforaimde as a functional monomer. The solution of P(NVF/AN) was spun through a wet spinning method and the precursor fiber was hydrolyzed in the hydrochloric acid solution to convert formamide moieties to the corresponding amine. The influence of hydrolytic conditions on hydrolysis degree, such as hydrolysis temperature, hydrolysis time, and hydrochloric acid concentrations were examined experimentally. The hydrolysis degree of the precursor fiber was evaluated by potentiometric and conductometric titrations. The changes of the structure and properties of the fibers were characterized through infrared spectroscopy, scanning electron microscopy, and tensile strength tester. The results showed that the hydrolysis degree was limited in acidic hydrolysis because of the electrostatic repulsion among the cationic amine groups and proton. The hydrolysis degree of precursor fiber reached nearly 60%, and the chelating fiber remained the adequate mechanical properties under the suitable hydrolysis condition. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

2.
The molecular weights of poly(N‐vinylformamide) [poly(NVF)] obtained by free‐radical polymerization were expanded from being in the range of thousands to hundreds of thousands. Primary amino groups were introduced by the hydrolysis of poly(NVF) under both acidic and basic conditions. After 2 h polyvinylamine [poly(VAm)] was given at 60°C under a 2N NaOH solution. The apparent activation energy of poly(NVF) hydrolysis was 61.8 kJ/mol. Furthermore, alkyl side chains were partly introduced by a polymer modification reaction in poly(VAm) with carboxylic acid, using WSC (water‐soluble carbodiimide) as the activating agent to produce the stimuli‐responsive poly(VAm) derivative. The effects of external stimuli such as temperature and pH on the phase‐transition behavior of the copolymers were then studied. The lower critical solution temperature at pH 12 decreased depending on the alkyl group content. The phase‐transition behavior of the resulting polymers was also found to vary depending on the side‐chain length of the alkyl groups. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1277–1283, 2003  相似文献   

3.
The reactivity ratios for the aqueous free‐radical copolymerization of diallyldimethylammonium chloride and N‐vinylformamide were found to be 0.13 and 1.92, respectively, from a Fineman–Ross analysis of a series of batch polymerizations. Because batch polymerization could not give a uniform product in a high yield with two monomers of such different reactivities, a semibatch procedure was developed in which the more reactive N‐vinylformamide was added in 10 steps over the course of the copolymerization. The poly(diallyldimethyl‐ ammonium chloride‐coN‐vinylformamide) copolymers were hydrolyzed to give poly(diallyldimethylammonium chloride‐co‐vinylamine). The utility of the vinylamine/diallyldimethylammonium chloride copolymers was demonstrated by the preparation and characterization of three derivatives: (1) a copolymer with coupled dansyl groups for fluorescence detection; (2) a copolymer with coupled dabsyl groups for ultraviolet–visible detection; and (3) an ultra‐high‐molecular‐weight (1.6 × 106 Da) poly(diallyldimethylammonium chloride) by chain extension (coupling) with glycerol diglycidyl ether. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 1068–1075, 2007  相似文献   

4.
Poly(N‐isopropylacrylamide) copolymers (PNIPAMs) containing pendent perfluoroalkyl (RF) or dodecyl groups have been synthesized by copolymerization of NIPAM with small amounts of RR‐acrylates or ‐methacrylates containing a sulfonamido moiety between the acrylate and RF groups or with dodecyl acrylate. Evidence for strong intermolecular hydrophobic association of the fluorocarbon groups is provided by large viscosity increases with copolymer concentration and upon addition of NaCl and surfactants. These interactions appear to be much stronger than that of the corresponding copolymers of poly(N,N‐dimethylacrylamide) with similar comonomer contents. Hydrophobic association between the RF groups is found to be much stronger than that of the corresponding dodecyl groups. The viscosity of some of the copolymer solutions, particularly in the presence of perfluorocarbon surfactants, was unusually temperature sensitive, decreasing by a factor of at least 1000 upon increasing the temperature from 10 to 20 °C. This large decrease is most probably related to the collapse of the copolymer coils near the lower critical solution temperature. This is in sharp contrast to the corresponding polyacrylamide or poly(N,N‐dimethylacrylamide) RF‐acrylate copolymers that show viscosity increases with increasing temperature in the 40–60 °C range. The NIPIAM copolymers were also found to be different from the acrylamide or N,N‐dimethylacrylamide perfluorocarbon acrylate copolymers in that they were found to be Newtonian at a low RF content but dilatant at a higher comonomer content. © 2000 Society of Chemical Industry  相似文献   

5.
In this article we report a new chelating fiber that was prepared from a hydrolyzate of poly(N‐vinylformamide/acrylonitrile) by a wet‐spinning method. This fiber contains chelating groups, such as amidine groups, amino groups, cyano groups, and amide groups, with high densities. We examined the chelating abilities for several metal ions with this fiber, and present the morphological merit of the fibrous product compared with the globular resin. Based on the research results, it is shown that the fiber has higher binding capacities and better adsorption properties for heavy metal ions than the resin. The pH value of the metal ion solution shows strong influences on the adsorption of the metal ions. The maximum adsorption capacities of the fiber for Cu2+, Cr3+, Co2+, Ni2+, and Mn2+ are 112.23, 88.11, 141.04, 108.06, and 73.51 mg/g, respectively. In mixed metal ions solution, the fiber adsorbs Cr3+, Cu2+ and Co2+ efficiently. The adsorbed metal ions can be quantitatively eluted by hydrochloric acid. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1378–1386, 2002  相似文献   

6.
Poly(N,N‐diethylacrylamide) (PDEA), poly(acrylic acid) (PAA), and a series of (N,N‐diethylacrylamide‐co‐acrylic acid) (DEA‐AA) random copolymers were synthesized by the method of radical polymerization. The measurement of turbidity showed that the phase behaviors of the brine solutions of the copolymers changed dramatically with the mole fraction of DEA (x) in these copolymers. Copolymers cop6 (x = 0.06) and cop11 (x = 0.11) in which acrylic acid content was higher presented the upper critical solution temperature (UCST) phase behaviors similar to PAA. Copolymer cop27 (x = 0.27) presented the lower critical solution temperature (LCST) behavior similar to PDEA. While copolymer cop18 (x = 0.18) in which acrylic acid content was moderate presented both UCST and LCST behaviors. The solution properties of the polymers were investigated by measurements of viscosity, fluorescence, and pH. It is reasonable to suggest that the sharp change of the phase behavior may be attributed to the interaction between acrylamide group and carboxylic group in the (DEA‐AA) copolymers. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

7.
Poly(vinylamine) (PVAm) was grafted on a poly(ethylene) (PE) film surface via the surface graft polymerization of N‐vinylformamide (NVF) and N‐vinylacetamide (NVA) and the subsequent hydrolysis of those grafted polymers. The surface was characterized by X‐ray photoelectron spectroscopy (XPS), contact angle, moisture absorption, and the leakage of electrostatic charge from the films. PNVF and PNVA were introduced onto the surface of the PE film successfully, in spite of the fact that the initiator for polymerization was a peroxide group. The grafted amounts of PNVF and PNVA were dependent on the grafting time. A PVAm‐grafted surface was obtained via the hydrolysis of the grafted PNVF. The grafted‐PNVA was not hydrolyzed under mild hydrolysis. The obtained PVAm‐grafted surface appeared to be useful for various applications, such as protein immobilization or chemical modification. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 1583–1587, 1999  相似文献   

8.
Poly(N‐phenyl acrylamide) (PPA) and poly(N‐phenyl methacrylamide) (PPMA) were prepared by using N‐phenyl acrylamide and N‐phenyl methacrylamide as monomer, respectively, in tetrahydrofuran using azobisisobutyronitrile as initiator. FT‐IR, 1H‐NMR, and GPC were used to characterize their molecular structure. The PPA obtained exhibited higher molecular weight and wider molecular weight distribution than that of PPMA. Their thermal degradation and kinetics were systematically investigated in two atmospheres of nitrogen and air from room temperature to 800°C by thermogravimetric analysis at 10°C/min. Based on the thermal decomposition reactions in nitrogen and air, it is shown that a three‐step degradation process in nitrogen and a four‐step degradation process for two polymers were observed in this investigation. The initial thermal degradation temperature was lower than 190°C. Under two atmospheres, PPA exhibits higher degradation temperature, higher temperature at the maximum weight‐loss rate, faster maximum weight‐loss rates, and larger weight loss for the first‐stage decomposition, as well as higher char yield at 500°C than those of PPMA. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1065–1071, 2003  相似文献   

9.
The studies involve the X‐ray photoelectron spectroscopy (XPS) and conductivity measurements of poly(N‐methyl aniline) and poly(N‐ethyl aniline) films deposited electrochemically at different pH values of −0.96, 2.22, and 3.78 for N‐methyl aniline and 1.10, 2.22, and 3.78 for N‐ethyl aniline. The results obtained reveal significant differences in the film properties of the two matrices as a function of pH of solution. These differences are explained on the basis of the competitive reaction products formed during polymerization in the two matrices along with the differences in the electron‐donating ability of the methyl and ethyl groups present on the nitrogen (N) atom. These results are further supported by the UV–Visible and IR data. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1286–1292, 1999  相似文献   

10.
Interpenetrating polymer network (IPN) hydrogels based on poly(vinyl alcohol) and poly(N‐isopropylacrylamide) were prepared by the sequential‐IPN method. The IPN hydrogels were analyzed for sorption behavior of water at 35°C and at a relative humidity of 95% using a dynamic vapor sorption system, and water diffusion coefficients were calculated. Differential scanning calorimetry was used for the quantitative determination of the amounts of freezing and nonfreezing water. Free water contents in the IPN hydrogel of IPN1, IPN2, and IPN3 were 45.8, 37.9 and 33.1% in pure water, respectively. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2041–2045, 2003  相似文献   

11.
The graft copolymer of N‐vinylformamide with alginic acid was synthesized by free radical polymerization using potassium peroxymonosulphate and thiourea as redox pair in inert atmosphere. The optimum conditions for maximum grafting have been determined by varying the concentrations of N‐vinylformamide, potassium peroxymonosulphate, thiourea, sulfuric acid, alginic acid as well as time duration and temperature. The grafting parameters increase up to the certain concentrations of N‐vinylformamide, potassium peroxymonosulhate, thiourea, and hydrogen ion while thereafter grafting parameters decrease. The effect of alginic acid concentration on grafting parameters has been observed to decrease continuously. It has also been found that grafting parameters increase up to certain time and temperature, respectively, and thereafter decrease. The swelling properties of graft copolymer in terms of swelling ratio and percent swelling are investigated. Flocculation property of pure and grafted sample for both coking and noncoking coals is also investigated for the treatment of coal mine waste water. The graft copolymer has been characterized by Fourier transform infrared spectroscopy as well as thermogravimetic analysis. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

12.
Thermally sensitive polymers change their properties with a change in environmental temperature in a predictable and pronounced way. These changes can be expected in drug delivery systems, solute separation, enzyme immobilization, energy‐transducer processes, and photosensitive materials. We have demonstrated a thermal‐sensitive switch module, which is capable of converting thermal into mechanical energy. We employed this module in the control of liquid transfer. The thermally sensitive switch was prepared by crosslinking poly(N‐isopropylacrylamide) (PNIPAAm) gel inside the pores of a sponge to generate the composite PNIPAAm/sponge gel. This gel, contained in a polypropylene tube, was inserted into a thermoelectric module equipped with a fine temperature controller. As the water flux through the composite gel changes from 0 to 6.6 × 102 L m−2 h, with a temperature change from 23 to 40°C, we can reversibly turn on and off the thermally sensitive switch. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75:1735–1739, 2000  相似文献   

13.
This research focuses on the syntheses of polyaniline with poly(styrenesulfonic acid) and their electrochemical behavior, including absorbance behavior and electrochemical response time of polyaniline‐poly(styrenesulfonic acid) [PANI–PSSA]. The complexes PANI–PSSA were prepared by electrochemical polymerization of monomer (aniline) with PSSA, using indium‐tin oxide (ITO) as working electrode in 1M HCl solution. Polyaniline (PANI), poly(o‐phenetidine)–poly(styrenesulfonic acid) [POP–PSSA], and poly(2‐ethylaniline)–poly(styrenesulfonic acid) [P2E‐PSSA] also were prepared by electrochemical polymerization and to be the reference samples. The products were characterized by IR, VIS, EPR, water solubility, elemental analysis, conductivity, SEM, and TEM. IR spectral studies shows that the structure of PANI–PSSA complexes is similar to that of polyaniline. EPR and visible spectra indicate the formation of polarons. The morphology of the blend were investigated by SEM and TEM, which indicate the conducting component and electrically conductive property of the polymer complexes. Elemental analysis results show that PANI–PSSA has a nitrogen to sulfur ratio (N/S) of 38%, lower than that for POP–PSSA (52%) and P2E–PSSA (41%). Conductivity of the complexes are around 10?2 S/cm, solubility of PANI–PSSA in water is 3.1 g/L. The UV‐Vis. absorbance spectra of the hybrid organic/inorganic complementary electro‐chromic device (ECD), comprising a polyaniline–poly(styrenesulfonic acid) [PANI–PSSA] complexes and tungsten oxide (WO3) thin film coupled in combination with a polymer electrolyte poly(2‐acrylamido‐2‐methyl‐propane‐sulfonic acid) [PAMPSA]. PANI–PSSA microstructure surface images have been studied by AFM. By applying a potential of ~3.0 V across the two external ITO contacts, we are able to modulate the light absorption also in the UV‐Vis region (200–900 nm) wavelength region. For example, the absorption changes from 1.20 to 0.6 at 720 nm. The complexes PANI–PSSA, POP–PSSA, and P2E–PSSA were prepared by electrochemical polymerization of monomer (aniline, o‐phenetidine, or 2‐ethylaniline) with poly(styrenesulfonic acid), using ITO as working electrode in 1M HCl solution, respectively. UV‐Vis spectra measurements shows the evidences for the dopped polyaniline system to be a highly electrochemical response time, recorded at the temperature 298 K, and the results were further analyzed on the basis of the color‐ discolor model, which is a typical of protontation systems. Under the reaction time (3 s) and monomer (aniline, o‐phenetidine, 2‐ethylaniline) concentration (0.6M) with PSSA (0.15M), the best electrochemical color and discolor time of the PANI–PSSA is slower than POP–PSSA complexes (125/125 ms; thickness, 3.00 μm) and P2E–PSSA complexes. Under the same thickness (10 μm), the best electrochemical color and discolor time of the PANI–PSSA complexes is 1500/750 ms, that is much slower than P2E–PSSA complexes (750/500 ms) and POP–PSSA complexes (500/250 ms). In film growing rate, the PANI–PSSA complexes (0.54 μm/s) are slower than P2E–PSSA complexes (0.79 μm/s) and POP–PSSA complexes (1.00 μm/s), it can be attributed to the substituted polyaniline that presence of electro‐donating (? OC2H5 or ? C2H5) group present in aniline monomer. The EPR spectra of the samples were recorded both at 298 K and 77 K, and were further analyzed on the basis of the polaron–bipolaron model. The narrower line‐width of the substituted polyaniline complexes arises due to polarons; i.e., it is proposed that charge transport take place through both polarons and bipolarons, compared to their salts can be attributed to the lower degree of structural disorder, the oxygen absorption on the polymeric molecular complexes, and due to presence of electro‐donating (? OC2H5 or ? C2H5) group present in aniline monomer. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100:4023–4044, 2006  相似文献   

14.
Poly(N‐isopropylacrylamide) (PNIPAAm)/poly(ethylene oxide) (PEO) semi‐interpenetrating polymer networks (semi‐IPNs) synthesized by radical polymerization of N‐isopropylacrylamide (NIPAAm) in the presence of PEO. The thermal characterizations of the semi‐IPNs were investigated by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and dielectric analysis (DEA). The melting temperature (Tm) of semi‐IPNs appeared at around 60°C using DSC. DEA was employed to ascertain the glass transition temperature (Tg) and determine the activation energy (Ea) of semi‐IPNs. From the results of DEA, semi‐IPNs exhibited one Tg indicating the presence of phase separation in the semi‐IPN, and Tgs of semi‐IPNs were observed with increasing PNIPAAm content. The thermal decomposition of semi‐IPNa was investigated using TGA and appeared at around 370°C. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3922–3927, 2003  相似文献   

15.
Partially aminated poly‐N‐vinylformamides (APNVF) were prepared by the hydrolysis of PNVF and used as the retention aid of rosin size. The dual retention aids system, consisting of this modern polymer and aluminum sulfate (alum) for neutral‐alkaline paper sizing using acid rosin sizes, was evaluated by experiment. The results indicated that APNVF was very effective and a small amount of the polymer used together with alum considerably increased the size retention and sizing degree of paper under neutral‐alkaline conditions. The cationic charge density of APNVF significantly influenced the sizing efficiency of the rosin sizes. Furthermore, the retention of alkaline filler CaCO3 and paper strength were improved by the polymer addition. It is clear that the polymer can be used as a multifunctional additive for papermaking. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 1805–1810, 2000  相似文献   

16.
The thermal degradation behavior of poly (vinyl chloride), PVC, in presence of poly(N‐acryloyl‐N′‐cyanoacetohydrazide), PACAH, has been studied using continuous potentiometric determination of the evolved HCl gas from the degradation process from one hand and by measuring the extent of discoloration of the degraded samples from the other. The efficiency of blending PACAH with dibasic lead carbonate, DBLC, conventional thermal stabilizer has also been investigated. A probable radical mechanism for the effect of PACAH on the thermal stabilization of PVC has been proposed. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

17.
Temperature‐sensitive poly(N‐isopropylacrylamide) hydrogels were successfully synthesized by using poly(ethylene oxide) as the interpenetrating agent. The newly prepared semi‐interpenetrating polymer network (semi‐IPN) hydrogels exhibited much better properties as temperature‐sensitive polymers than they did in the past. Characterizations of the IPN hydrogels were investigated using a swelling experiment, FTIR spectroscopy, and differential scanning calorimetry (DSC). Semi‐IPN hydrogels exhibited a relatively high temperature dependent swelling ratio in the range of 23–28 at room temperature. DSC was used for the determination of the lower critical solution temperature of the semi‐IPN hydrogel. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3032–3036, 2003  相似文献   

18.
N‐2‐Thiazolylmethacrylamide (NTMA) was polymerized by a radical route to obtain the polymer in good yields. The complexes of PolyNTMA with three rare earth ions Nd(III), Pr(III), and Sm(III) were prepared for the first time. FTIR and 1H NMR were applied to characterize these materials. The magnetic behavior of PolyNTMA–metal complexes was examined as a function of applied magnetic field at 4 K and as a function of temperature (4–300 K) at an applied magnetic field of 30 kOe. It was found that Pr(III) complex exhibits an antiferromagnetic property, while Nd(III) and Sm(III) complexes exhibit a special magnetic property different from the typical magnet. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1289–1293, 2006  相似文献   

19.
A new type of polyelectrolyte complexes formed by hyperbranched poly(sulfone‐amine) hydrochlorate and poly(sodium acrylate) has been reported. It has been found that the stoichiometry between polycation and polyanion is 1.16, which means that hyperbranched polyelectrolyte can also form the compact complexes in spite of the ill‐defined structure. Moreover, the effect of various parameters, such as the architecture of poly(sulfone‐amine), molecular weight of polymer, concentration and low molecular salt, on the complexation is also discussed. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 2323–2329, 2007  相似文献   

20.
The miscibility or complexation of poly(styrene‐co‐acrylic acid) containing 27 mol % of acrylic acid (SAA‐27) and poly(styrene‐coN,N‐dimethylacrylamide) containing 17 or 32 mol % of N,N‐dimethylacrylamide (SAD‐17, SAD‐32) or poly(N,N‐dimethylacrylamide) (PDMA) were investigated by different techniques. The differential scanning calorimetry (DSC) analysis showed that a single glass‐transition temperature was observed for all the mixtures prepared from tetrahydrofuran (THF) or butan‐2‐one. This is an evidence of their miscibility or complexation over the entire composition range. As the content of the basic constituent increases as within SAA‐27/SAD‐32 and SAA‐27/PDMA, higher number of specific interpolymer interactins occurred and led to the formation of interpolymer complexes in butan‐2‐one. The qualitative Fourier transform infrared (FTIR) spectroscopy study carried out for SAA‐27/SAD‐17 blends revealed that hydrogen bonding occurred between the hydroxyl groups of SAA‐27 and the carbonyl amide of SAD‐17. Quantitative analysis carried out in the 160–210°C temperature range for the SAA‐27 copolymer and its blends of different ratios using the Painter–Coleman association model led to the estimation of the equilibrium constants K2, KA and the enthalpies of hydrogen bond formation. These blends are miscible even at 180°C as confirmed from the negative values of the total free energy of mixing ΔGM over the entire blend composition. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1011–1024, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号