首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The FE2 method is a renown computational multiscale simulation technique for solid materials with fine‐scale microstructure. It allows for the accurate prediction of the mechanical behavior of structures made of heterogeneous materials with nonlinear material behavior. However, the FE2 method leads to excessive CPU time and storage requirements, even for academic two‐dimensional problems. In order to allow for realistic three‐dimensional two‐scale simulations, a significant reduction of the CPU and memory usage is required. For this purpose, the authors have recently proposed a reduced basis homogenization scheme based on a mixed incremental variational principle. The approach exploits the potential structure of generalized standard materials. Thereby, important speed‐ups and memory savings can be achieved. Using high‐performance GPUs, the reduced‐basis method can be further accelerated. In the present contribution, our previous works are combined and extended to form the FE2‐reduced method: the FE2R. The FE2R can be used to simulate three‐dimensional structural problems with consideration of the nonlinearity and microstructure of the underlying material at acceptable computational cost. Thereby, it allows for a new level of complexity in nonlinear multiscale simulations. Numerical examples illustrate the capabilities of the chosen approach. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
This paper proposes a level‐set based topology optimization method incorporating a boundary tracking mesh generating method and nonlinear programming. Because the boundary tracking mesh is always conformed to the structural boundary, good approximation to the boundary is maintained during optimization; therefore, structural design problems are solved completely without grayscale material. Previously, we introduced the boundary tracking mesh generating method into level‐set based topology optimization and updated the design variables by solving the level‐set equation. In order to adapt our previous method to general structural optimization frameworks, the incorporation of the method with nonlinear programming is investigated in this paper. To successfully incorporate nonlinear programming, the optimization problem is regularized using a double‐well potential. Furthermore, the sensitivities with respect to the design variables are strictly derived to maintain consistency in mathematical programming. We expect the investigation to open up a new class of grayscale‐free topology optimization. The usefulness of the proposed method is demonstrated using several numerical examples targeting two‐dimensional compliant mechanism and metallic waveguide design problems. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Modal derivative is an approach to compute a reduced basis for model order reduction of large‐scale nonlinear systems that typically stem from the discretization of partial differential equations. In this way, a complex nonlinear simulation model can be integrated into an optimization problem or the design of a controller, based on the resulting small‐scale state‐space model. We investigate the approximation properties of modal derivatives analytically and thus lay a theoretical foundation of their use in model order reduction, which has been missing so far. Concentrating on the application field of structural mechanics and structural dynamics, we show that the concept of modal derivatives can also be applied as nonlinear extension of the Craig–Bampton family of methods for substructuring. We furthermore generalize the approach from a pure projection scheme to a novel reduced‐order modeling method that replaces all nonlinear terms by quadratic expressions in the reduced state variables. This complexity reduction leads to a frequency‐preserving nonlinear quadratic state‐space model. Numerical examples with carefully chosen nonlinear model problems and three‐dimensional nonlinear elasticity confirm the analytical properties of the modal derivative reduction and show the potential of the proposed novel complexity reduction methods, along with the current limitations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
In this work, an asymptotically concentrated topology optimization method based on the solid isotropic material with logistic function interpolation is proposed. The asymptotically concentrated method is introduced into the process of optimization cycle after updating the design variables. At the same time, with the use of the solid isotropic material with logistic function interpolation, all the candidate densities are reasonably polarized, relying on the characteristic of the interpolation curve itself. The asymptotically concentrated method can effectively suppress the generation of intermediate density and speed up the process of updating the design variables, hence improving the optimization efficiency. Moreover, the above polarization can weaken the influence of low‐related‐density elements and enhance the influence of high‐related‐density elements. For the single‐material topology optimization problem, gray‐scale elements can be effectively eliminated, and clear boundary and smaller compliance can be obtained by this method. For the multimaterial topology optimization problem, minimum compliance with high efficiency can be achieved by this method. The proposed method mainly includes the following advantages: concentrated density variables, reasonable interpolation, high computational efficiency, and good topological results.  相似文献   

5.
6.
Genetic algorithms (GAs) have become a popular optimization tool for many areas of research and topology optimization an effective design tool for obtaining efficient and lighter structures. In this paper, a versatile, robust and enhanced GA is proposed for structural topology optimization by using problem‐specific knowledge. The original discrete black‐and‐white (0–1) problem is directly solved by using a bit‐array representation method. To address the related pronounced connectivity issue effectively, the four‐neighbourhood connectivity is used to suppress the occurrence of checkerboard patterns. A simpler version of the perimeter control approach is developed to obtain a well‐posed problem and the total number of hinges of each individual is explicitly penalized to achieve a hinge‐free design. To handle the problem of representation degeneracy effectively, a recessive gene technique is applied to viable topologies while unusable topologies are penalized in a hierarchical manner. An efficient FEM‐based function evaluation method is developed to reduce the computational cost. A dynamic penalty method is presented for the GA to convert the constrained optimization problem into an unconstrained problem without the possible degeneracy. With all these enhancements and appropriate choice of the GA operators, the present GA can achieve significant improvements in evolving into near‐optimum solutions and viable topologies with checkerboard free, mesh independent and hinge‐free characteristics. Numerical results show that the present GA can be more efficient and robust than the conventional GAs in solving the structural topology optimization problems of minimum compliance design, minimum weight design and optimal compliant mechanisms design. It is suggested that the present enhanced GA using problem‐specific knowledge can be a powerful global search tool for structural topology optimization. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
8.
We study the simultaneous analysis and design (SAND) formulation of the ‘classical’ topology optimization problem subject to linear constraints on material density variables. Based on a dual method in theory, and a primal‐dual method in practice, we propose a separable and strictly convex quadratic Lagrange–Newton subproblem for use in sequential approximate optimization of the SAND‐formulated classical topology design problem. The SAND problem is characterized by a large number of nonlinear equality constraints (the equations of equilibrium) that are linearized in the approximate convex subproblems. The availability of cheap second‐order information is exploited in a Lagrange–Newton sequential quadratic programming‐like framework. In the spirit of efficient structural optimization methods, the quadratic terms are restricted to the diagonal of the Hessian matrix; the subproblems have minimal storage requirements, are easy to solve, and positive definiteness of the diagonal Hessian matrix is trivially enforced. Theoretical considerations reveal that the dual statement of the proposed subproblem for SAND minimum compliance design agrees with the ever‐popular optimality criterion method – which is a nested analysis and design formulation. This relates, in turn, to the known equivalence between rudimentary dual sequential approximate optimization algorithms based on reciprocal (and exponential) intervening variables and the optimality criterion method. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
We consider the problem of optimal design of nano‐scale heat conducting systems using topology optimization techniques. At such small scales the empirical Fourier's law of heat conduction no longer captures the underlying physical phenomena because the mean‐free path of the heat carriers, phonons in our case, becomes comparable with, or even larger than, the feature sizes of considered material distributions. A more accurate model at nano‐scales is given by kinetic theory, which provides a compromise between the inaccurate Fourier's law and precise, but too computationally expensive, atomistic simulations. We analyze the resulting optimal control problem in a continuous setting, briefly describing the computational approach to the problem based on discontinuous Galerkin methods, algebraic multigrid preconditioned generalized minimal residual method, and a gradient‐based mathematical programming algorithm. Numerical experiments with our implementation of the proposed numerical scheme are reported. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
To be feasible for computationally intensive applications such as parametric studies, optimization, and control design, large‐scale finite element analysis requires model order reduction. This is particularly true in nonlinear settings that tend to dramatically increase computational complexity. Although significant progress has been achieved in the development of computational approaches for the reduction of nonlinear computational mechanics models, addressing the issue of contact remains a major hurdle. To this effect, this paper introduces a projection‐based model reduction approach for both static and dynamic contact problems. It features the application of a non‐negative matrix factorization scheme to the construction of a positive reduced‐order basis for the contact forces, and a greedy sampling algorithm coupled with an error indicator for achieving robustness with respect to model parameter variations. The proposed approach is successfully demonstrated for the reduction of several two‐dimensional, simple, but representative contact and self contact computational models. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
This article presents a detailed study on the potential and limitations of performing higher‐order multi‐resolution topology optimization with the finite cell method. To circumvent stiffness overestimation in high‐contrast topologies, a length‐scale is applied on the solution using filter methods. The relations between stiffness overestimation, the analysis system, and the applied length‐scale are examined, while a high‐resolution topology is maintained. The computational cost associated with nested topology optimization is reduced significantly compared with the use of first‐order finite elements. This reduction is caused by exploiting the decoupling of density and analysis mesh, and by condensing the higher‐order modes out of the stiffness matrix. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
The present work addresses a multiscale framework for fast‐Fourier‐transform–based computational homogenization. The framework considers the scale bridging between microscopic and macroscopic scales. While the macroscopic problem is discretized with finite elements, the microscopic problems are solved by means of fast‐Fourier‐transforms (FFTs) on periodic representative volume elements (RVEs). In such multiscale scenario, the computation of the effective properties of the microstructure is crucial. While effective quantities in terms of stresses and deformations can be computed from surface integrals along the boundary of the RVE, the computation of the associated moduli is not straightforward. The key contribution of the present paper is the derivation and implementation of an algorithmically consistent macroscopic tangent operator which directly resembles the effective moduli of the microstructure. The macroscopic tangent is derived by means of the classical Lippmann‐Schwinger equation and can be computed from a simple system of linear equations. This is performed through an efficient FFT‐based approach along with a conjugate gradient solver. The viability and efficiency of the method is demonstrated for a number of two‐ and three‐dimensional boundary value problems incorporating linear and nonlinear elasticity as well as viscoelastic material response.  相似文献   

13.
Nonlinear structural optimization is fairly expensive and difficult, because a large number of nonlinear analyses is required due to the large number of design variables involved in topology optimization. In element density based topology optimization, the low density elements create mesh distortion and the updating of finite element material with low density elements has a severe effect on the optimization results in the next cycles. In order to overcome these difficulties, the equivalent static loads method for nonlinear response structural optimization (ESLSO) primarily used for size and shape optimization has been applied to topology optimization. The nonlinear analysis is performed with the given loading conditions to calculate equivalent static loads (ESLs) and these ESLs are used to perform linear response optimization. In this paper, the authors have presented the results of five case studies with material, geometric and contact nonlinearities showing good agreement and providing justification of the proposed method.  相似文献   

14.
This paper presents a finite element topology optimization framework for the design of two‐phase structural systems considering contact and cohesion phenomena along the interface. The geometry of the material interface is described by an explicit level set method, and the structural response is predicted by the extended finite element method. In this work, the interface condition is described by a bilinear cohesive zone model on the basis of the traction‐separation constitutive relation. The non‐penetration condition in the presence of compressive interface forces is enforced by a stabilized Lagrange multiplier method. The mechanical model assumes a linear elastic isotropic material, infinitesimal strain theory, and a quasi‐static response. The optimization problem is solved by a nonlinear programming method, and the design sensitivities are computed by the adjoint method. The performance of the presented method is evaluated by 2D and 3D numerical examples. The results obtained from topology optimization reveal distinct design characteristics for the various interface phenomena considered. In addition, 3D examples demonstrate optimal geometries that cannot be fully captured by reduced dimensionality. The optimization framework presented is limited to two‐phase structural systems where the material interface is coincident in the undeformed configuration, and to structural responses that remain valid considering small strain kinematics. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper we outline a computational technique for the calibration of macroscopic constitutive laws with automatic error control. In the most general situation the state variables of the constitutive law, as well as the material parameters, are spatially non‐homogeneous. The experimental observations are given in space–time. Based on an appropriate dual problem, we compute a posteriori the discretization error contributions from approximations of the parameter, state and costate fields in space–time for an arbitrarily chosen goal‐oriented error measure of engineering significance. Such a measure can be used in an adaptive strategy (not discussed in this paper) to meet a predefined error tolerance. An important observation is that the Jacobian matrix associated with the resulting Newton method is used (in principle) in solving the dual problem. Rather than treating the Jacobian in a monolithic fashion, we utilize a sequential solution strategy, whereby the FE‐topology of the discretized state problem is used repeatedly. Moreover, the proposed solution strategy lends itself naturally to the computation of first and second order sensitivities, which are obtained with little extra computational effort. Numerical results are given for the prototype model of confined aquifer flow with spatially non‐homogeneous permeability. The efficiency of the optimization strategy and the effectivity of the error computation are assessed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
Reduced‐order models that are able to approximate output quantities of interest of high‐fidelity computational models over a wide range of input parameters play an important role in making tractable large‐scale optimal design, optimal control, and inverse problem applications. We consider the problem of determining a reduced model of an initial value problem that spans all important initial conditions, and pose the task of determining appropriate training sets for reduced‐basis construction as a sequence of optimization problems. We show that, under certain assumptions, these optimization problems have an explicit solution in the form of an eigenvalue problem, yielding an efficient model reduction algorithm that scales well to systems with states of high dimension. Furthermore, tight upper bounds are given for the error in the outputs of the reduced models. The reduction methodology is demonstrated for a large‐scale contaminant transport problem. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
The integrated optimization of lightweight cellular materials and structures are discussed in this paper. By analysing the basic features of such a two‐scale problem, it is shown that the optimal solution strongly depends upon the scale effect modelling of the periodic microstructure of material unit cell (MUC), i.e. the so‐called representative volume element (RVE). However, with the asymptotic homogenization method used widely in actual topology optimization procedure, effective material properties predicted can give rise to limit values depending upon only volume fractions of solid phases, properties and spatial distribution of constituents in the microstructure regardless of scale effect. From this consideration, we propose the design element (DE) concept being able to deal with conventional designs of materials and structures in a unified way. By changing the scale and aspect ratio of the DE, scale‐related effects of materials and structures are well revealed and distinguished in the final results of optimal design patterns. To illustrate the proposed approach, numerical design problems of 2D layered structures with cellular core are investigated. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
A new nonprobabilistic reliability-based topology optimization method for continuum structures with displacement constraints is proposed in this paper, in which the optimal layout consists of solid material and truss-like microstructure material simultaneously. The unknown-but-bounded uncertainties that exist in material properties, external loads, and safety displacements are considered. By utilizing the representative volume element analysis, rules of macro-micro stiffness performance equivalence can be confirmed. A solid material and truss-like microstructure material structure integrated design interpolation model is firstly constructed, in which design domain elements can be conducted to select solid material or truss-like microstructure material by a combination of the finite element method in the topology optimization process. Moreover, a new nonprobabilistic reliability measuring index, namely, the optimization feature distance is defined by making use of the area-ratio ideas. Furthermore, the adjoint vector method is employed to obtain the sensitivity information between the reliability measure and design variables. By utilizing the method of moving asymptotes, the investigated optimization problem can be iteratively solved. The effectiveness of the developed methodology is eventually demonstrated by two examples.  相似文献   

19.
Bilateral filtering for structural topology optimization   总被引:1,自引:0,他引:1  
Filtering has been a major approach used in the homogenization‐based methods for structural topology optimization to suppress the checkerboard pattern and relieve the numerical instabilities. In this paper a bilateral filtering technique originally developed in image processing is presented as an efficient approach to regularizing the topology optimization problem. A non‐linear bilateral filtering process leads to a suitable problem regularization to eliminate the checkerboard instability, pronounced edge preserving smoothing characteristics to favour the 0–1 convergence of the mass distribution, and computational efficiency due to its single pass and non‐iterative nature. Thus, we show that the application of the bilateral filtering brings more desirable effects of checkerboard‐free, mesh independence, crisp boundary, computational efficiency and conceptual simplicity. The proposed bilateral technique has a close relationship with the conventional domain filtering and range filtering. The proposed method is implemented in the framework of a power‐law approach based on the optimality criteria and illustrated with 2D examples of minimum compliance design that has been extensively studied in the recent literature of topology optimization and its efficiency and accuracy are highlighted. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
A computational methodology for optimizing the conceptual layout of unsteady flow problems at low Reynolds numbers is presented. The geometry of the design is described by the spatial distribution of a fictitious material with continuously varying porosity. The flow is predicted by a stabilized finite element formulation of the incompressible Navier–Stokes equations. A Brinkman penalization is used to enforce zero‐velocities in solid material. The resulting parameter optimization problem is solved by a non‐linear programming method. The paper studies the feasibility of the material interpolation approach for optimizing the topology of unsteady flow problems. The derivation of the governing equations and the adjoint sensitivity analysis are presented. A design‐dependent stabilization scheme is introduced to mitigate numerical instabilities in porous material. The emergence of non‐physical artifacts in the optimized material distribution is observed and linked to an insufficient resolution of the flow field and an improper representation of the pressure field within solid material by the Brinkman penalization. Two numerical examples demonstrate that the designs optimized for unsteady flow differ significantly from their steady‐state counterparts. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号