首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
To further study the Hermitian and non‐Hermitian splitting methods for a non‐Hermitian and positive‐definite matrix, we introduce a so‐called lopsided Hermitian and skew‐Hermitian splitting and then establish a class of lopsided Hermitian/skew‐Hermitian (LHSS) methods to solve the non‐Hermitian and positive‐definite systems of linear equations. These methods include a two‐step LHSS iteration and its inexact version, the inexact Hermitian/skew‐Hermitian (ILHSS) iteration, which employs some Krylov subspace methods as its inner process. We theoretically prove that the LHSS method converges to the unique solution of the linear system for a loose restriction on the parameter α. Moreover, the contraction factor of the LHSS iteration is derived. The presented numerical examples illustrate the effectiveness of both LHSS and ILHSS iterations. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
  总被引:2,自引:0,他引:2  
For the large sparse block two-by-two real nonsingular matrices, we establish a general framework of practical and efficient structured preconditioners through matrix transformation and matrix approximations. For the specific versions such as modified block Jacobi-type, modified block Gauss-Seidel-type, and modified block unsymmetric (symmetric) Gauss-Seidel-type preconditioners, we precisely describe their concrete expressions and deliberately analyze eigenvalue distributions and positive definiteness of the preconditioned matrices. Also, we show that when these structured preconditioners are employed to precondition the Krylov subspace methods such as GMRES and restarted GMRES, fast and effective iteration solvers can be obtained for the large sparse systems of linear equations with block two-by-two coefficient matrices. In particular, these structured preconditioners can lead to efficient and high-quality preconditioning matrices for some typical matrices from the real-world applications.

  相似文献   


3.
    
In this note, some errors in the article (Numer. Linear Algebra Appl. 2007; 14 :217–235) are pointed out and some correct results are presented. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
    
This paper is concerned with several variants of the Hermitian and skew‐Hermitian splitting iteration method to solve a class of complex symmetric linear systems. Theoretical analysis shows that several Hermitian and skew‐Hermitian splitting based iteration methods are unconditionally convergent. Numerical experiments from an n‐degree‐of‐freedom linear system are reported to illustrate the efficiency of the proposed methods. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
    
The Jacobi–Davidson (JD) algorithm is considered one of the most efficient eigensolvers currently available for non‐Hermitian problems. It can be viewed as a coupled inner‐outer iteration, where the inner one expands the search subspace and the outer one reduces the eigenpair residual. One of the difficulties in the JD efficient use stems from the definition of the most appropriate inner tolerance, so as to avoid useless extra work and keep the number of outer iterations under control. To this aim, the use of an efficient preconditioner for the inner iterative solver is of paramount importance. The present paper describes a fresh implementation of the JD algorithm with controlled inner iterations and block factorized sparse approximate inverse preconditioning for non‐Hermitian eigenproblems in a parallel computational environment. The algorithm performance is investigated by comparison with a freely available software package such as SLEPc. The results show that combining the inner tolerance control with an efficient preconditioning technique can allow for a significant improvement of the JD performance, preserving a good scalability. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
    
The paper is devoted to the spectral analysis of effective preconditioners for linear systems obtained via a finite element approximation to diffusion‐dominated convection–diffusion equations. We consider a model setting in which the structured finite element partition is made by equilateral triangles. Under such assumptions, if the problem is coercive and the diffusive and convective coefficients are regular enough, then the proposed preconditioned matrix sequences exhibit a strong eigenvalue clustering at unity, the preconditioning matrix sequence and the original matrix sequence are spectrally equivalent, and under the constant coefficients assumption, the eigenvector matrices have a mild conditioning. The obtained results allow to prove the conjugate gradient optimality and the generalized minimal residual quasi‐optimality in the case of structured uniform meshes. The interest of such a study relies on the observation that automatic grid generators tend to construct equilateral triangles when the mesh is fine enough. Numerical tests, both on the model setting and in the non‐structured case, show the effectiveness of the proposal and the correctness of the theoretical findings. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
    
For the Hermitian and skew‐Hermitian splitting iteration method and its accelerated variant for solving the large sparse saddle‐point problems, we compute their quasi‐optimal iteration parameters and the corresponding quasi‐optimal convergence factors for the more practical but more difficult case that the (1, 1)‐block of the saddle‐point matrix is not algebraically equivalent to the identity matrix. In addition, the algebraic behaviors and the clustering properties of the eigenvalues of the preconditioned matrices with respect to these two iterations are investigated in detail, and the formulas for computing good iteration parameters are given under certain principle for optimizing the distribution of the eigenvalues. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
    
In this note, based on the previous work by Pour and Goughery (New Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems Numer. Algor. 69 (2015) 207–225), we further discuss this new Hermitian and skew-Hermitian splitting (described as NHSS) methods for non-Hermitian positive definite linear systems. Some new convergence conditions of the NHSS method are obtained, which are superior to the results in the above paper.  相似文献   

9.
10.
         下载免费PDF全文
For the non-Hermitian and positive semidefinite systems of linear equations, we derive necessary and sufficient conditions for guaranteeing the unconditional convergence of the preconditioned Hermitian and skew-Hermitian splitting iteration methods. We then apply these results to block tridiagonal linear systems in order to obtain convergence conditions for the corresponding block variants of the preconditioned Hermitian and skew-Hermitian splitting iteration methods.

  相似文献   


11.
对称矩阵的两特征值问题   总被引:2,自引:1,他引:2  
彭文华 《大学数学》2004,20(3):59-60
介绍了对称矩阵的两特征值问题,并给出了计算公式.  相似文献   

12.
13.
  总被引:1,自引:0,他引:1  
The aim of this paper is to provide a convergence analysis for a preconditioned subspace iteration, which is designated to determine a modest number of the smallest eigenvalues and its corresponding invariant subspace of eigenvectors of a large, symmetric positive definite matrix. The algorithm is built upon a subspace implementation of preconditioned inverse iteration, i.e., the well-known inverse iteration procedure, where the associated system of linear equations is solved approximately by using a preconditioner. This step is followed by a Rayleigh-Ritz projection so that preconditioned inverse iteration is always applied to the Ritz vectors of the actual subspace of approximate eigenvectors. The given theory provides sharp convergence estimates for the Ritz values and is mainly built on arguments exploiting the geometry underlying preconditioned inverse iteration.  相似文献   

14.
    
We prove a convexity theorem on a generalized numerical range that combines and generalizes the following results: 1) Friedland and Loewy's result on the existence of a nonzero matrix with multiple first eigenvalue in subspaces of hermitian matrices, 2) Bohnenblust's result on joint positive definiteness of hermitian matrices, 3) the Toeplitz-Hausdorff Theorem on the convexity of the classical numerical range and its various generalizations by Au-Yeung, Berger, Brickman, Halmos, Poon, Tsing and Westwick.

  相似文献   


15.
关于亚正定矩阵的一个充分条件   总被引:3,自引:1,他引:3  
根据 Johnson给出的亚正定矩阵的定义 ,给出了一个关于亚正定矩阵的充分条件 .  相似文献   

16.
Estimating upper bounds of the spectrum of large Hermitian matrices has long been a problem with both theoretical and practical significance. Algorithms that can compute tight upper bounds with minimum computational cost will have applications in a variety of areas. We present a practical algorithm that exploits k-step Lanczos iteration with a safeguard step. The k is generally very small, say 5-8, regardless of the large dimension of the matrices. This makes the Lanczos iteration economical. The safeguard step can be realized with marginal cost by utilizing the theoretical bounds developed in this paper. The bounds establish the theoretical validity of a previous bound estimator that has been successfully used in various applications. Moreover, we improve the bound estimator which can now provide tighter upper bounds with negligible additional cost.  相似文献   

17.
复正定矩阵的充要条件   总被引:2,自引:0,他引:2  
本文研究Hermite正定矩阵、实正定矩阵的推广概念复正定矩阵,给出了复方阵复正定性的一些充分必要条件。  相似文献   

18.
    
We perform a spectral analysis of the preconditioned Hermitian/skew‐Hermitian splitting (PHSS) method applied to multilevel block Toeplitz linear systems in which the coefficient matrix Tn(f) is associated with a Lebesgue integrable matrix‐valued function f. When the preconditioner is chosen as a Hermitian positive definite multilevel block Toeplitz matrix Tn(g), the resulting sequence of PHSS iteration matrices Mn belongs to the generalized locally Toeplitz class. In this case, we are able to compute the symbol ?(f,g) describing the asymptotic eigenvalue distribution of Mnwhen n and the matrix size diverges. By minimizing the infinity norm of the spectral radius of the symbol ?(f,g), we are also able to identify effective PHSS preconditioners Tn(g) for the matrix Tn(f). A number of numerical experiments are presented and commented, showing that the theoretical results are confirmed and that the spectral analysis leads to efficient PHSS methods. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
本文给出了应用矩阵方法求矩阵A的加权广义逆A^[1,2,W3],A^[1,2,w3]和A^[1,2][w,w]的充要条件。  相似文献   

20.
本文研究了正项矩阵级数收敛的充要条件 ,从而把正项级数的收敛原理推广到了正项矩阵级数的情形 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号