首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Based on horizontal-component digital seismograms recorded on 6 stations of the Yunnan Regional Digital Network, we inversed the inelastic attenuation in the source region of the Shidian swarm using the Atkinson method and the site responses of the 6 stations 200km around the Shidian epicenters using the Moya method. The observational seismic waveform data were corrected by removing the propagation, instrument and site effects before the source parameters of the Shidian swarm in 2001 were determined using genetic algorithms. The results are as follows: (1) There is a linear relation between seismic moment and local magnitude. The seismic moment is between 1×10~ 12 and 10~ 14 N·m. The rupture radius of the seismic focus varies from 157m to 973m. The seismic moment and the rupture radius maintain a linear correlation. (2) The corner frequency increases as the seismic moment decreases. Based on the expression between corner frequency and seismic moment using least squares fitting, we can obtain the estimated value of the corner frequency. The time-varying value of the calculated corner frequency minus the estimated corner frequency shows that there were continuous high and low anomalies before the strong aftershocks. (3) The seismic stress drop is in the range of 0.07~1.55MPa. The stress drop seems independent of the local magnitude. The variation of stress drops is high before the occurrence of the strong aftershocks. (4) The depth of aftershocks is mostly in a range from 5km to 10km, which means that energy release of aftershocks is mainly concentrated in this range of depth.  相似文献   

2.
Broadband P and S waves source spectra of 12 MS5.0 earthquakes of the 1997 Jiashi, Xinjiang, China, earthquake swarm recorded at 13 GDSN stations have been analyzed. Rupture size and static stress drop of these earthquakes have been estimated through measuring the corner frequency of the source spectra. Direction of rupture propagation of the earthquake faulting has also been inferred from the azimuthal variation of the corner frequency. The main results are as follows: ①The rupture size of MS6.0 strong earthquakes is in the range of 10~20 km, while that of MS=5.0~5.5 earthquakes is 6~10 km.② The static stress drop of the swarm earthquakes is rather low, being of the order of 0.1 MPa. This implies that the deformation release rate in the source region may be low. ③ Stress drop of the earthquakes appears to be proportional to their seismic moment, and also to be dependent on their focal mechanism. The stress drop of normal faulting earthquakes is usually lower than that of strike-slip type earthquakes. ④ For each MS6.0 earthquake there exists an apparent azimuthal variation of the corner frequencies. Azimuthally variation pattern of corner frequencies of different earthquakes shows that the source rupture pattern of the Jiashi earthquake swarm is complex and no uniform rupture expanding direction exists.  相似文献   

3.
Crustal stress field holds an important position in geodynamics research, such as in plate motion simulations, uplift of the Qinghai-Xizang (Tibet) Plateau and earthquake preparation and occurrence. However, most of the crustal stress studies emphasize particularly on the determination of stress direction, with little study being done on stress magnitude at present. After reviewing ideas on a stress magnitude study from geological, geophysical and various other aspects, a method to estimate the stress magnitude in the source region according to the deflection of stress direction before and after large earthquakes and the stress drop tensor of earthquake rupture has been developed. The proposed method can also be supplemented by the average apparent stress before and after large earthquakes. The stress direction deflection before and after large earthquakes can be inverted by massive focal mechanisms of foreshocks and aftershocks and the stress drop field generated by the seismic source can be calculated by the detailed distribution of the earthquakes rupture. The mathematical relationship can then be constructed between the stress drop field, where its magnitude and direction are known and the stress tensor before and after large earthquakes, where its direction is known but magnitude is unknown, thereby obtaining the stress magnitude. The average apparent stress before and after large earthquakes can be obtained by using the catalog of broadband radiated energy and seismic moment tensor of foreshocks and aftershocks and the different responses to stress drops. This relationship leads to another estimation of stress magnitude before a large earthquake. The stress magnitude and its error are constrained by combining the two methods, which provide new constraints for the geodynamics study.  相似文献   

4.
The M_S7. 3 earthquake occurred in Yutian,Xinjiang on February 12,2014. Based on seismic waveform data before the earthquake and aftershocks of the earthquake sequence,which were recorded by the Xinjiang Regional Digital Seismic Network, this paper corrected instrument response,propagation path and site response of the S-wave recording spectra. We then calculated with genetic algorithms,on the basis of the Brune model,the source parameters of the 102 M_L≥3. 0 Yutian earthquake sequence,seismic moment,apparent stress and corner frequency. The results show that,seismic moment of the earthquake sequence is between 3. 46 × 10~11- 2. 08 × 10~15N·m,apparent stress is between1. 48 × 10~5- 1. 16 × 10~6 Pa,mean stress level is 0. 31 MPa,and corner frequency is between1. 4- 7. 1Hz in the range of 3. 0- 5. 0. By analyzing the apparent stress and corner frequency variation with time,we obtain that apparent stress of earthquakes before the Yutian M_S7. 3 earthquake was significantly higher than the aftershock sequence,but the corner frequency was significantly lower than the aftershock sequence. Apparent stress was at a high level before the main shock, which shows that the main shock zone accumulated higher stress,and then the apparent stress was reduced. The main shock occurred in the process of slow increase. Because of the release of a large amount of stress,after the M_S7. 3 earthquake,the apparent stress was gradually reduced. That was the performance of low stress fracture of aftershocks.  相似文献   

5.
Based on seismic wave records of the Chengdu digital seismic network and Zipingpu reservoir digital seismic network from August 16,2004 to May 12,2008 when the Wenchuan MS8.0 earthquake occurred,the parameters of focal mechanisms of 486 earthquakes with magnitude larger than M1.6 in the Zipingpu reservoir area were calculated using amplitude ratio method,meanwhile the temporal-spatial variation characteristics of mechanisms and stress field were analyzed based on these parameters.Results show a low ratio of thrust earthquakes and an increased number of strike-slip earthquakes in the reservoir water area in the period from 2006 to 2008.While in the areas far from the reservoir waterfront,the thrust earthquakes took up a high proportion and the strike-slip ones did not increase.The direction of mean principal compressive stress field was deflected and disturbed differently in each area before the Wenchuan MS8.0 earthquake.  相似文献   

6.
Using the digital telemetric seismic waveform data of Chengdu and Kunming, this article studies the focal mechanism solutions and the apparent stress values of a large number of small earthquakes, and then analyzes the dynamic variation of regional stress fields and the spatio-temporal distribution of apparent stress values. The annual variation values of the azimuth of average principal stress field before the May 12, 2008 M_S8.0 Wenchuan earthquake in the Sichuan-Yunnan region were 58° from 2003 to 2004, 85° from 2003 to 2005,61° from 2006 to 2007 and 90° from 2006 to April 2008 respectively. In recent years, deflection or disturbances occurred in the azimuth of the average principal stress field in the Sichuan-Yunnan region. Analysis shows that this may be related to the change of stress field states of crustal blocks before and after the December 26, 2004 M_S9.0 Sumatra earthquake and the 2008 M_S8.0 Wenchuan earthquake. The ratio of thrust-type earthquakes in the Sichuan-Qinghai block was on the higher side in the period from 2006 to 2007, and the source faulting type of the regional moderate and small earthquakes had changed before the M_S8.0 Wenchuan earthquake. The change of state of the stress field is consistent with the changes in block displacement fields revealed by GPS data and the crustal shortening velocity vertical to the Longmenshan fault zone. Based on the radiation energy calculated from all bands of the seismic waveform, the value of apparent stress σ_app is obtained. The fluctuation shape of the fitting trend of the apparent stress is related to the intensity of regional seismicity. It reveals that the micro-dynamic fluctuation process of the regional stress value is similar to the azimuth transition of the regional principal compressive stress field, which can be used to probe for pregnant physical processes. Areas with a higher value of apparent stress σ_app are possible areas of potential seismic risk. It can be seen from the spatial distribution of the medium and short-term apparent stress σ_app before the M_S8.0 Wenchuan earthquake, the Longmenshan fault zone is in a low stress distribution area, and the relatively high apparent stress is in the peripheral area. These images may show medium and short-term locking phenomena near the seismogenic tectonics of the M_S8.0 Wenchuan earthquake. For example, changes with time of the focal parameter consistency of the sub-blocks in Sichuan and Yunnan Provinces, continual increase of thrust-type earthquakes in the Sichuan-Qinghai block and the appearance of spatial distribution areas of high apparent σ_app stress. The work on this aspect was continued after the M_S8.0 Wenchuan earthquake, and the results seem to be shown a clearer relationship between these phenomena and future great earthquakes.  相似文献   

7.
Based on 49 digital seismograms recorded by 73 seismic stations in the Jiangsu Telemetered Seismic Network,the paper uses Atkinson's method to calculate the inelastic attenuation coefficient of the Jiangsu area. We find that the frequency-dependent Q in the Jiangsu region is Q( f) = 272. 1·f~(0. 5575). We also use Moya's method to invert the 63 stations' site responses. The results show that the site responses of the 25 stations in Jiangsu are approximately 1 at a range between 1Hz and 20 Hz, which is consistent with their basements on rocks. The response curves of the site responses of the 14 underground stations are similar to each other. Their site responses show an amplification at low frequencies and minimization at high frequencies. The calculation of the Brune model on the waveform data of M_L≥2. 5 earthquakes from Jiangsu Digital Seismic Network between October 2010 and May 2015 in terms of seismic source parameters of 58 seismic waves shows that there are good correlations between seismic magnitude and other source parameters such as seismic moment, source radius and corner frequency, while the correlations between seismic magnitude and stress drop,and stress drop and source radius are not so good.  相似文献   

8.
It gradually becomes a common work using large seismic wave data to obtain source parameters, such as seismic moment, break radius, stress drop, with completing of digital seismic network in China (Hough, et al, 1999; Bindi, et al, 2001). These parameters are useful on earthquake prediction and seismic hazard analysis. Although the computation methods of source parameters are simple in principle and the many research works have been done, it is not easy to obtain the parameters accurately. Th…  相似文献   

9.
With co-seismic surface rupture slip displacements provided by the field observation for the 2001 MS8.1 West Kunlun Mountain Pass earthquake, this paper estimates the rupture speed on the main faulting segment with a long straight fault trace on the surface based on a simple slip-weakening rupture model, in which the frictional overshoot or undershoot are involved in consideration of energy partition during the earthquake faulting. In contrast to the study of Bouchon and Vallée, in which the rupture propagation along the main fault could exceed the local shear-wave speed, perhaps reach the P-wave speed on a certain section of fault, our results show that, under a slip-weakening assumption combined with a frictional undershoot (partial stress drop model), average rupture speed should be equal to or less than the Rayleigh wave speed with a high seismic radiation efficiency, which is consistent with the result derived by waveform inversion and the result estimated from source stress field. Associated with the surface rupture mechanism, such as partial stress drop (frictional undershoot) associated with the apparent stress, an alternative rupture mechanism based on the slip-weakening model has also been discussed.  相似文献   

10.
Based on the waveform data observed by the regional seismic network of Gansu Province,we calculated the apparent stress of 422 earthquakes with M_L≥ 2. 0 occurring in the surrounding area of the Minxian earthquake from January 2010 to July 2014 and obtained the temporal and spatial variation of apparent stress before and after the Minxian earthquake. Results show that( 1) the high value of apparent stress of earthquakes with M_L≥4. 0 was concentrated in the epicenter area before the Minxian earthquake while that of earthquakes with M_L 4. 0 was not;( 2) Apparent stress around the epicenter area showed an obvious increasing process before the Minxian earthquake and the increasing process has continued after the main shock,which means that this study area is still in the danger of strong earthquakes.  相似文献   

11.
陈学忠  李艳娥  郭祥云 《地震》2011,31(4):15-25
本文根据近震源条件下,由北京数字遥测地震台网观测到的波形资料,利用Brune模式,得到了2002年1月至2006年6月期间首都圈及邻近地区989次ML≥2.0地震的震源谱,测定了它们的拐角频率和零频幅值.通过相关计算公式,得到了破裂半径、地震矩、地震能量、应力降、视应力等震源动力学参数.分析了这些动力学参数的标度关系以...  相似文献   

12.
使用广西数字地震台网记录的2013年6月-7月广西平果ML1.0-3.0震群162次地震波形资料,采用Brune(1970)模型,通过几何扩散校正、介质衰减校正、仪器校正等,将速度记录谱归算为震源位移谱,利用遗传算法计算拐角频率及零频极限,然后计算地震矩、应力降等小震震源参数,系统分析各参数之间的关系.研究表明:近震震级、地震矩、震源破裂半径、拐角频率、应力降等之间可以拟合为对数或半对数的线性关系;地震应力降、视应力与震源破裂半径没有明显的依赖关系,但与地震矩成正相关关系;与其他地区的同类研究结果基本一致,获得各参数的定标关系相近,尤其是通过最小二乘法拟合应力降与地震矩之间的关系后,与浙江珊溪水库地区的应力降与地震矩之间的关系有很强的一致性;与其他地区的应力降及视应力降相比较,本研究区属于低应力释放地区,但由于此次研究的地震事件时间跨度较短,且时间段比较集中,对该地区的应力释放水平还需跟踪研究.  相似文献   

13.
利用广西南丹县大厂矿区地震监测台网记录的地震波资料,采用Brune(1970)模型,将速度记录谱归算为震源位移谱,使用遗传算法计算拐角频率及零频极限,然后计算地震矩、应力降等小震震源参数,并系统分析各种参数之间的关系。大厂矿区38次较大地震的震源参数计算结果为:地震矩范围在2.18×1011~7.89×1012 N·m之间;震源破裂半径78~439m;地震应力降在0.01~1.79 MPa之间。表明:地震矩与震级、震源半径、拐角频率之间呈线性关系,而应力降不依赖于地震矩,分布较为离散。大厂矿区应力降值明显偏低,这可能与该区域背景应力低有关。  相似文献   

14.
应用2011年1月-2015年4月柯坪块体及周边数字地震台站(38°-42.5°N,75°-80.5°E)记录的3.0 ≤ M ≤ 5.0地震事件,结合柯坪块体介质品质因子和各台站场地响应,计算各地震应力降、地震矩、震源破裂半径、拐角频率等新震源参数,并研究各背景值变化特征及彼此间对应关系。结果表明:柯坪块体地区地震震级与地震矩、矩震级、震源尺度之间表现为较好的正相关性,与地震拐角频率之间呈负相关。地震矩与震源破裂尺度整体呈正相关,但当震源破裂尺度较小时,地震矩变化不大,当震源破裂尺度大于250 m时,地震矩随震源破裂尺度的增大变化较快。由柯坪块体应力降时间分布特征分析可知,研究区具有地震前应力降呈现高值异常、震后缓慢恢复低值的演化过程。  相似文献   

15.
采用石家庄遥测台网数字化的地震记录,选取了1998年1月~1999年12月张北震区的146条地震,分别对P波、S波作了波谱分析,求取了拐角频率、地震矩、震源半径、应力降、平均位错和波谱能量。分析了拐角频率和应力降随时间的变化趋势,并讨论了震源参数相互之间的关系。结果表明,在1999年3月11日5.6级地震之前应力降和拐角频率均出现异常,同时发现,S波对环境的变化比P波敏感,P波较稳定,且各震源参数与震级有一定相关。  相似文献   

16.
利用山东数字地震台网记录到的胶东半岛及附近地区2010年以来的地震波形资料,采用Brune模型,并结合遗传算法反演了本区134次2.0级以上地震的震源波谱参数.结果表明胶东半岛地区中小地震的地震矩在9.76×1011~5.9×1014N·M之间;应力降范围在0.017~25MPa之间,均值是0.97MPa;视应力范围在0.06~10.2MPa,平均应力水平在0.396MPa.地震矩、应力降和视应力都与震级呈正相关关系,拐角频率与震级的关系不是很明显;地震矩和拐角频率成负相关关系.根据本区震源参数和震级的定量统计关系,去除震级影响,通过应力降和视应力随时间的变化得到目前正处于应力的释放时期.  相似文献   

17.
Source parameters estimated in the frequency domain for 100 selected seismic events from the Rudna copper mine, with moment magnitude ranging from 1.4 to 3.6, were collected to study their scaling relations and to compare them with the parameters estimated in the time domain. The apparent stress and static stress drop, corrected for the limited bandwidth recording, increase slightly in a similar manner with increasing seismic moment. The ratio of apparent stress to static stress drop, a measure of radiation efficiency, is practically constant and its mean value is close to 0.1. For 37 seismic events, with moment magnitude between 1.9 and 3.4, source parameters were estimated in the time domain from relative source time functions, that displayed unilateral rupture propagation, and their rupture velocity could be estimated. It ranges from 0.23 to 0.80 of shear wave velocity and is almost independent of seismic moment. The fault length, estimated from the average source pulse width and rupture velocity, is clearly dependent on seismic moment and is smaller than the source radius estimated from the corner frequency on the average by about 25 percent. There is no correlation between the values of static stress drop estimated in the frequency and time domains, but the time domain stress drop is in general similar to that estimated in the frequency domain. The apparent stress increases with increasing rupture velocity, and the ratio of apparent stress to static stress drop seems also to depend on rupture velocity.  相似文献   

18.
安宁河-则木河断裂带地震视应力研究   总被引:5,自引:0,他引:5  
利用四川和云南数字遥测地震台网的数字地震记录资料。研究了包括地震视应力在内的震源参数。首先对资料进行预处理,然后计算地动位移和速度的功率谱积分,再计算地震辐射能量和视应力等震源参数。根据计算结果分震级区间研究了视应力值沿安宁河-则木河断裂带的分布情况,及该断裂带上中等地震的震源谱及参数差异,认为安宁河断裂带视应力相对更高。  相似文献   

19.
紫坪铺水库地区蓄水前后视应力标度率变化研究   总被引:7,自引:2,他引:5       下载免费PDF全文
杨志高  张晓东 《地球物理学报》2010,53(12):2861-2868
本文利用紫坪铺水库台网记录到的波形资料,计算了2004~2008年170个ML≥1.0级地震的震源参数.紫坪铺水库震源参数计算结果与其他大陆地区有明显不同:(1)拐角频率远低于其他大陆地区结果,表明库区地震波传播经过了较强的衰减过程;(2)视应力计算结果比其他地区小3个数量级,可能是由于库区地震波的高频成分衰减强烈,低估了能量集中在高频的小地震的地震辐射能量.分析了蓄水前后拐角频率和地震矩以及视应力和地震矩关系(视应力标度率)变化,结果表明:相同地震矩的地震蓄水后拐角频率增加,地震高频成分相对丰富;蓄水前视应力与地震矩的关系不明显,蓄水后视应力随地震矩的增加而增加.视应力标度率的改变可能是蓄水后地震震源物理过程逐渐改变的直接反映.  相似文献   

20.
浙江珊溪水库地震震源参数特征研究   总被引:1,自引:1,他引:0       下载免费PDF全文
马起杨  朱新运 《地震学报》2016,38(6):835-846
利用2014年1月-2015年12月浙江省区域数字地震台网记录的1 360次珊溪水库ML0.5-4.4地震资料,采用Brune模式,将台站获取的速度记录进行几何扩散校正、介质衰减校正及仪器校正后得到速度谱,对速度谱在频率域进行傅里叶积分得到震源位移谱,之后使用遗传算法计算得到拐角频率和震源位移谱零频极限值,进而计算出该区的地震矩为1010-1014 N·m,震源破裂半径为33-550 m,拐角频率为2.4-39.7 Hz,地震应力降为0.04-6.74 MPa,视应力为0-2.75 MPa.在此基础上,对各参数特征及其关系进行系统性分析,结果表明:各震源参数之间表现出一定的对数线性或半对数线性关系;空间上,应力降和拐角频率在库区西北段较高,东南段较低;应力降与地震矩在空间上呈反向关系,拐角频率与破裂半径在空间上呈负相关.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号