首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对酸性萃取剂负载的Cr(Ⅲ)高酸难反萃、反萃不完全的问题,根据不同酸度条件下Cr(Ⅲ)与OH-络合形态的差别,进行了碱作为反萃取剂从负载Cr(Ⅲ)的酸性萃取剂中回收铬实验研究.结果表明,碱反萃取P204负载有机相时的优化条件为0.5 mol/L氢氧化钠、相比为1、常温、反萃取反应为10 min,经四级逆流反萃取,反萃取率达到98.3 %;碱反萃取P507负载有机相时的优化条件为2 mol/L氢氧化钠、相比为1、常温、反萃取反应为20 min,经四级逆流反萃取,反萃取率达到98.8 %.   相似文献   

2.
针对酸性萃取剂负载的Cr(Ⅲ)高酸难反萃、反萃不完全的问题,根据不同酸度条件下Cr(Ⅲ)与OH-络合形态的差别,进行了碱作为反萃取剂从负载Cr(Ⅲ)的酸性萃取剂中回收铬实验研究.结果表明,碱反萃取P204负载有机相时的优化条件为0.5 mol/L氢氧化钠、相比为1、常温、反萃取反应为10 min,经四级逆流反萃取,反萃取率达到98.3%;碱反萃取P507负载有机相时的优化条件为2 mol/L氢氧化钠、相比为1、常温、反萃取反应为20 min,经四级逆流反萃取,反萃取率达到98.8%.  相似文献   

3.
新工艺以钐、铕、钆富集物为原料,以P507为萃取剂,在盐酸介质中进行连续萃取分离。包括Gd-Tb分离及洗Tb:Sm-Eu及Nd-Sm分离;Eu-Gd分离及提纯氧化铕。该工艺较先进,具有一种萃取剂一个体系下连续分离的优点,和具有下列主要特征: 1.采用半逆流方法反萃中重稀土是国内首创,既可降低反萃液酸度,又能提高反萃液稀土浓度,不仅降低了酸碱消耗,而且有利于流程的衔接,解决了P204和P507中重稀土反萃的难题。 2.工艺适应性强,可同时适应P204和P507Nd.Sm分组中重稀土原料。对国内大部分采用  相似文献   

4.
《中国有色冶金》2017,(2):81-81
本发明公开了一种稀土有机萃取剂及其反萃工艺。该有机萃取剂中含环己烷的体积分数为20%~35%,液氨皂化萃取剂的体积分数为15%~45%,N235的体积分数为15%~35%,磺化煤油的体积分数为20%~40%;其中,液氨皂化萃取剂为P507、P204中的一种。  相似文献   

5.
研究了P204从硫酸体系萃取镓的性能,分别考察了料液酸度、萃取剂浓度、时间、浓度等对镓萃取与反萃的影响并绘制等温线,确定并模拟逆流试验过程。结果表明:料液含0.3g/L Ga^3+,pH=1.2,有机相采用20%P204(体积分数)+磺化煤油,按相比O/A=1∶3,25℃萃取8min,经过3级逆流萃取,镓萃取率可达到99.33%,负载有机相用1.0mol/L H2SO4溶液反萃,按相比O/A=10∶1,反萃温度25℃,反萃时间10min,经过3级逆流反萃,镓反萃率达98.99%,镓浓度富集近30倍。反萃液中的镓经氨水中和沉淀、焙烧后,可得到氧化镓产品。  相似文献   

6.
非皂化P204-H3cit-NdCl3体系萃取分离稀土的方法有效地解决了传统萃取分离体系下,稀土工业生产存在皂化废水中氨氮含量高污染水资源等问题,但该体系反萃取的酸度过高而限制了该方法的进一步应用.通过单级和错流反萃取研究了反萃液酸度、反萃温度、反萃时间和反萃级数对反萃取率的影响,并以此为基础,进一步研究了0.6mol/L低酸度六级逆流反萃取.实验结果表明:与单级及错流反萃取相比,六级逆流反萃率可达到100%,酸利用率为50%左右,明显减少了酸耗,而且反萃余液酸度为0.3 mol/L左右,达到了现有稀土萃取分离的工业要求.该研究为非皂化P204-H3cit-NdCl3体系萃取稀土元素的应用提供了一定的依据.  相似文献   

7.
<正>本发明公开了一种稀土有机萃取剂及其反萃工艺。该有机萃取剂中含环己烷的体积分数为20%~35%,液氨皂化萃取剂的体积分数为15%~45%,N235的体积分数为15%~35%,磺化煤油的体积分数为20%~40%;其中,液氨皂化萃取剂为P507、P204中的一种。反萃工艺包括萃取制备含不  相似文献   

8.
张睿  胡振光 《湿法冶金》2023,(3):263-268
研究了用P204、P507萃取分离赤泥浸出液中的铁、钙,考察了萃取剂的体积分数、水相pH、萃取温度、萃取时间和相比VO/VA对铁、钙萃取分离的影响,确定了2种萃取剂的最佳萃取试验条件,对比了萃取性能。结果表明:有机相组成为40%P204+60%磺化煤油时,在水相pH=1.4、萃取温度50℃、萃取时间15 min、相比VO/VA=1/1条件下,Fe3+萃取率为94.29%,Ca2+萃取率为5.07%,P204可较好萃取分离铁和钙;有机相为30%P507+70%磺化煤油时,在水相pH=2.5、萃取温度40℃、萃取时间15 min、相比VO/VA=3/1条件下,Fe3+萃取率可达99.67%,Ca2+萃取率为1.95%;P204、P507都能从赤泥浸出液中萃取分离铁、钙,相较而言,P507萃取分离性能好于P204。  相似文献   

9.
以P204和TBP作萃取剂,建立了从冶锌废渣中同时提取镓和铟的新工艺。在大于1mol/L酸度条件下,用P204-煤油作萃取剂实现了镓和铟萃取分离。经三级萃取后,铟的提取率达到99%以上,镓的萃取率小于1%。在大于4mol/L酸度条件下,用TBP-煤油作萃取剂可使镓的提取率接近100%,TBP有机相用1.5mol/L氯化铵溶液反萃,镓的反萃率可达99%以上。该提取工艺操作简单,可实现同时提取工业废渣中的镓和铟。  相似文献   

10.
电解金属锰合格液中锰镁的萃取分离研究   总被引:1,自引:0,他引:1  
利用P507-磺化煤油体系对电解金属锰合格液中的锰镁组分进行了萃取研究。分别对硫酸铵的浓度,P507的体积分数,皂化率,相比以及反萃工艺中的各个参数进行了探讨。结果表明:在硫酸铵浓度为78.00 g/L,P507体积分数为30%,皂化率为20%,相比为1∶1等条件下,镁的萃取率达到48.57%,锰的萃取率达到了75.00%;反萃过程中镁的最高反萃率为45.84%,但锰的反萃率均为零。该研究为电解金属锰合格液中锰镁的萃取分离提供了必要的理论依据,对我国电解金属锰生产工艺的完善有较大的促进作用。  相似文献   

11.
高纯氧化镝中微量轻稀土杂质的萃取色层是采用新型树脂—P_(204)萃淋树脂为固定相,盐酸为流动相.试验了流动相酸度、流速、温度对镝与轻稀土杂质分离的影响.在本文确定的条件下,4小时内可将主体镝与轻稀土杂质定量分离,镝的残留量小于50微克,富集倍数在2000倍以上.P_(204)萃淋树脂与浸渍P_(507)的硅烷化硅球相比,具有萃取剂不易流失的优点,分离在常温进行,操作简便.  相似文献   

12.
对去除铁、砷、钙、镁后的硫酸镍溶液,采用钠皂化的P507萃取剂分离铜、锌、钴.考察了皂化率、P507体积分数、平衡pH值、相比、时间、温度以及逆流萃取级数对萃取效果的影响.同时考察了负载有机相反萃过程中硫酸浓度、反萃相比、时间对铜、锌、钴反萃效果的影响.结果表明,当萃取有机相组成为35 % P507+65 %磺化煤油,钠皂化率为65 %,相比(VO/VA)为1:1,平衡pH值为4,25 ℃,萃取时间为5 min,经3级逆流萃取,铜、锌、钴的萃取率分别为96.73 %、99.87 %、94.17 %.对负载有机相经过酸性去离子水(pH=3~4)洗涤后,用1 mol/L硫酸溶液,时间为5 min,反萃相比(VO/VA)为1:1.在此条件下,铜、锌、钴的反萃率分别为99.94 %、99.94 %、99.86 %.   相似文献   

13.
P_(204)萃取含铜酸性废水中铁的研究   总被引:3,自引:0,他引:3  
本文采用P204萃取剂对湿法炼铜酸性废水中的铁进行了萃取反萃研究。研究了混合时间、P204体积浓度和相比对萃取铁的影响,同时检测了萃取过程中水相硫酸浓度的变化。针对本试验研究的原料液,采用50%P204在相比(O/A)为9/1时进行萃取,Fe3+的萃取率达到85.96%。采用6N盐酸溶液对负载Fe3+的50%P204有机相进行反萃,当反萃相比(O/A)达到1∶9时,Fe3+的反萃率达到77.44%。  相似文献   

14.
镍电解液用P204萃取除铜   总被引:4,自引:2,他引:4  
以P204为萃取剂,从镍电解液中萃取除铜。研究了pH、相比(O/A)、P204体积浓度和振荡时间对萃取效果的影响,确定了P204萃取铜的最佳条件。结果表明:随着pH的升高,铜的萃取率增大;相比(O/A)越大萃取分离效果越好;随着P204体积浓度的升高,铜萃取率也相应的升高。室温下P204萃取铜的最佳工艺条件:P204的体积浓度15%,相比(O/A)1∶2,水相初始pH2.0,振荡时间3 min。在此最佳条件下,待处理液的一级萃取率达81.33%。反萃实验中反萃率可达84.97%。  相似文献   

15.
普遍的稀土分离采用一种萃取剂萃取,其萃取率较低,为提高稀土萃取率使其资源最大化利用,本文采用P204-N235混合共同萃取体系来萃取氯化钇和氯化钆的混合稀土料液,通过研究P204-N235相比、P204-N235体积比、震荡时间、P204-N235协同萃取氯化钇与氯化钆水相初始料液PH值及稀土离子浓度,实验结果表明P204-N235协同萃取稀土当P204-N235相比为3∶1、P204与N235萃取剂体积比为1∶1、震荡时间为10 min、P204-N235协同萃取氯化钇与氯化钆水相初始料液PH值=3、稀土离子浓度为0.1 mol/L时可强化稀土的萃取效果。  相似文献   

16.
从石煤浸出液中萃取钒   总被引:1,自引:1,他引:0  
采用P204-煤油萃取体系从含钒浸出液中萃取钒,确定了有机相中钒饱和容量和萃取剂体积含量之间的关系,根据单一条件的萃取效果,进行了多级逆流萃取及反萃试验,结果表明:若要使钒的萃取率大于95%,需进行6~7级的逆流萃取,若要使钒的反萃率大于98%,需进行10~11级的逆流反萃。  相似文献   

17.
进行了P292与Alamine336所构成混合萃取剂用于萃取稀土试验。结果表明,两种萃取剂混合萃取稀土元素具有正协同作用,当两者按照体积比2︰3进行混合,在相比4︰1,萃取时间3 min的条件下达到了较高的萃取率。对萃取稀土后的负载有机相用1.5 mol/L的盐酸能够将稀土完全反萃,反萃后的有机相与等体积的中性水混合3次后,有机相得到了充分的再生。该试验具有较好的重复性和循环性。  相似文献   

18.
针对现有锗萃取剂的弊端,采用HBL101从高浓度硫酸体系中萃取锗,分别考察了料液酸度、萃取剂浓度、时间、相比、温度等因素对锗萃取及反萃的影响并绘制出等温线。结果表明,在最佳条件下,采用体积分数为15%的HBL101+磺化煤油作为有机相(相比O/A=1∶1),经过4级逆流萃取,锗萃取率可达到98.32%;负载有机相用150g/L NaOH溶液反萃(相比O/A=8∶1),经过6级逆流反萃,锗反萃率达98%以上。  相似文献   

19.
采用皂化的P204+磺化煤油体系共萃铬、铁,选择性反萃分离铬、铁工艺,从电镀污泥硫酸浸出液中回收富集铬.考察皂化率、P204浓度、料液初始pH值、萃取时间、温度、相比等因素对于萃取效果的影响,考察反萃剂组成、浓度、相比等因素对反萃效果的影响.结果表明:P204皂化率及浓度是影响铬的萃取率重要因素.在萃取有机相组成为30 %P204+70 %磺化煤油,皂化率为70 %,料液pH=2.42,VO/VA=1/1,萃取温度28 ℃,振荡时间5 min条件下,经6级逆流萃取达到平衡之后,出口水相铬浓度为0.9 mg/L左右,铬萃取率为99.99 %.采用2段反萃工序有效的分离铬铁:采用2 mol/L硫酸反萃,相比VO/VA=5/1,温度32 ℃,振荡时间5 min,经过3级逆流反萃,铬反萃率为97.5 %,铬浓度富集到29.5 g/L,铁浓度为10 mg/L;反萃铬后负载有机相再用氢氧化钠溶液反萃铁.   相似文献   

20.
采用P204作为萃取剂,磺化煤油为稀释剂,从锰钴镍溶液中二级萃取分离锰,有机相反萃取富集锰,考察各因素对锰萃取率及分离系数的影响并确定最优条件。结果表明,在室温下,一级萃取相比O/A=2.5,P204含量30%,pH=3.5,皂化率30%,锰萃取率为62.39%;二级萃取在P204含量30%,皂化率30%,O/A=2,锰的总萃取率达98.06%,锰与钴、镍分离系数分别为90.11、92.33。萃取液经硫酸反萃洗钴镍,按相比O/A=10,酸度70 g/L,可洗去85%以上的钴和镍。洗钴镍后液经硫酸反萃锰,按相比O/A=4,酸度110 g/L,可反萃98.27%的锰,反萃液钴、镍的浓度小于0.5 g/L。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号