首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
陈跃朋 《中州煤炭》2018,(3):164-169
确定巷间煤柱合理尺寸是保证留底煤掘进双巷布置大采高工作面安全、高产与高效的关键所在。以某矿122106大采高工作面沿底掘进胶运巷和辅运巷之间的护巷煤柱为工程背景,对工作面生产地质条件展开现场调研,同时原位测试巷道围岩地质力学参数。基于上述原始数据理论,估算出煤柱极限强度与合理的煤柱宽度范围,通过数值试验研究手段,分析初步选定宽度煤柱条件下,二次回采阶段巷道围岩及煤柱内部应力、位移和塑性破坏特征。结果表明:煤柱的极限强度为50.48 MPa,合理的煤柱宽度为19.24~29.28 m。煤柱宽度20 m时,煤柱内塑性区是2个独立的区域;当煤柱宽度达到一定程度后,接续面回采对上个工作面侧煤柱应力影响较小,主要是对本侧煤柱影响较大;靠近煤柱侧顶板和帮部变形较大,垂直位移最大值集中在巷道肩角位置,顶板出现不均匀下沉;煤柱核区内垂直应力均小于其极限强度,能保证稳定;煤柱最大垂直应力集中在两侧,靠近采空区的位置,煤柱中部存在较明显的应力下降区域。  相似文献   

2.
受到原岩应力与采动应力叠加影响的巷道会产生非均匀变形,甚至发现顶板事故,采动巷道围岩稳定性控制是实现矿井安全高效开采的关键。针对长岭一号煤矿152106工作面轨道巷受到采动影响变形严重的问题,采用现场监测、数值模拟等研究方法,分析了采动巷道围岩变形特征及塑性区演化规律。结果表明:在采动影响下,巷道围岩变形呈非均匀特征,工作面前方巷道围岩变形量小于工作面后方,巷道煤柱侧变形量大于煤壁侧,顶板出现离层并且靠近煤柱侧底鼓量更大,局部可达400mm|工作面前方最大主应力、主应力比值、塑性区范围均小于工作面后方,塑性区呈椭圆形分布,巷道围岩位移量与塑性区范围具有一致性。据此提出了补强支护方案,即顶板补打锚索、煤柱对穿锚索及打设单体液压支柱,现场试验结果表明轨道巷煤柱帮变形减少了65%,巷道底鼓量260mm,工程应用效果较好。  相似文献   

3.
针对回采等造成的非均称变形巷道支护难题,采用实验室实验、数值模拟、理论分析和现场工业试验的综合方法,研究了非均称变形巷道围岩位移、应力和塑性区等围岩稳定性指标变化规律,以及高强度分区锚网索支护作用,提出了非均称变形巷道高强度分区锚网索支护技术。研究结果表明:煤层回采等造成巷道周围应力非均称分布,导致围岩变形以顶板非均称下沉和两帮不对称位移为主;靠近采空区侧煤帮强度弱化,促使巷帮及顶板深部岩体向塑性破坏状态转变,围岩稳定性急剧劣化;同时,巷道帮部稳定性与顶板稳定性呈非线性正比关系,随着帮部变形量增加,顶板下沉量急剧增加,而顶板急剧下沉加速帮部煤体破坏。对顶板和两帮分区设计支护参数,增大采空区侧煤帮承载能力,减小顶板及实体煤帮围岩破坏范围,提高顶板以及作为顶板基础的两帮强度和抗变形能力,有效控制巷道非均称变形。  相似文献   

4.
王冬 《煤》2022,(3):103-105,108
文章针对综放工作面在开采采动影响下回采巷道超前范围围岩严重变形问题,现结合同发东周窑煤矿8107综放工作面回采巷道的地质及生产技术条件,通过建立FLAC3D数值计算模型,得到了两巷道在采掘影响下的围岩应力分布、顶板垂直位移和塑性区发育特征;通过分析运输巷受一次回采影响,工作面侧帮部应力集中明显,顶板下沉量迅速增加,塑性...  相似文献   

5.
为揭示叠合采动影响下围岩的变形破坏特征,以羊场湾矿160206工作面为工程背景,通过现场监测、理论分析计算、数值模拟和现场工程试验的综合研究方法,研究叠合采动应力场下回风巷围岩的应力场演化规律和塑性区形态分布特征,揭示煤层巷道在叠合采动影响下的非均匀扩展机理。结果表明:上下区段的叠加采动影响导致160206工作面前方回风巷处于高偏应力环境,这是造成回风巷发生非对称破坏的主控因素;叠合采动巷道在高偏应力作用下塑性区呈蝶形形态,且蝶叶向采空区一侧偏转,围岩塑性区形态呈煤壁帮顶板及煤柱帮底板破坏范围大的非均匀扩展特征。据此,提出采用非对称长短锚杆索协调加强支护、超前单元支架及钻孔卸压的联合支护技术,在叠合采动影响区域进行工业性试验,取得良好的效果。  相似文献   

6.
原海鹏 《煤》2021,(1):62-64
为提高回采巷道围岩控制能力、确保采面回采安全,文章以山西某矿5307运输巷围岩加固为研究对象,针对应力集中、围岩承载能力不强、裂隙发育等原因导致的围岩变形量过大问题,提出采用注浆方式控制围岩变形。运输巷围岩变形以顶板下沉、煤柱帮收敛为主,在对注浆方案优选后,提出顶板采用浅孔、深孔结合注浆,煤柱帮采用深孔注浆方式,注浆浆液以高水充填浆液为主、马丽散为辅,并对注浆方案进行了设计。现场应用后,巷道顶板、巷帮变形量分别为390 mm、675 mm,可满足采面回采需要。  相似文献   

7.
以酸刺沟煤矿6上特厚煤层大采高综放回采巷道支护为工程背景,基于井下地质力学实测结果,采用数值模拟方法,对比分析了酸刺沟煤矿6上煤层不同煤柱宽度和不同巷道断面尺寸下煤岩体的受力、变形及破坏特征。研究结果表明:6上煤层顶板结构较为单一,以粗砂岩为主,不同位置强度不同,大多在40~80MPa之间,巷帮煤体平均抗压强度为19.80MPa,所测测站中最大水平主应力为7.94MPa,总体处于较低的应力水平;煤柱宽度由15m增加到20m时,巷道变形减小最为显著;煤柱宽度由25m增大到30m时,巷道变形减小趋势变得不明显;巷道掘进与工作面回采阶段巷道围岩应力随宽度增加的变化趋势相同,随着巷道宽度的增加,巷帮垂直应力呈线性增加,巷道顶板的水平应力呈线性减小。基于上述结论,对酸刺沟煤矿6上煤层1109胶运巷进行了支护设计与井下试验,工作面回采后巷道断面收缩率小于15%,实现了特厚顶煤大断面强采动围岩变形的有效控制。  相似文献   

8.
为解决深井大断面双巷布置回采巷道二次采动期间围岩控制问题,以刘庄矿6203工作面回风巷为工程背景,根据现场实际观测情况分析了巷道变形特征,即回采期间巷道变形表现为底鼓量大于顶板下沉,煤柱帮变形远大于实体煤帮的非对称形态,巷道底板及煤柱帮围岩变形最严重。在此基础上分析了护巷煤柱、围岩应力、围岩强度、支护形式对巷道底鼓的影响,认为护巷煤柱尺寸过小,支护参数不合理是导致巷道破坏变形的主要原因。提出了改变护巷煤柱尺寸、优化巷道支护参数、局部注浆和留设卸压槽的底鼓控制技术。通过工程实践表明,新的支护方案使巷道围岩得到了有效控制,具有良好的安全技术经济效益。  相似文献   

9.
以界沟煤矿8220工作面机巷为研究对象,针对7220工作面回采造成8220机巷顶板不稳定的情况,运用极限平衡理论和弹性力学理论对煤柱一侧塑性区宽度和上位煤层底板应力分布规律进行研究。结果表明,7#煤煤柱一侧塑性区宽度x0为21.1 m,上位煤层开采后,原岩应力平衡状态被打破,在煤壁附近区域出现了应力集中区和卸压区。底板最大破坏深度hmax为15.91m,由塑性区宽度得出煤层底板最大破坏深度与煤壁的水平距离为7.41 m,采空区底板破坏区沿水平方向的最大距离为84.3 m。根据7#煤层采空区左侧煤壁与8#煤层回采巷道顶板中心线的相对位置不同,提出4套布置方案,通过综合分析,当煤壁与回采巷道顶板中心线距离为22 m时,回采巷道受力较小且均匀,塑性区分布不大,围岩变形量也很小,为最佳布置方案。  相似文献   

10.
为研究厚煤层下回风巷道掘进过程中围岩的变形破坏规律,以朔州煤电铁峰公司南阳坡矿5800回风顺槽为背景,采用FLAC3D对其应力、变形和塑性区变化情况展开数值模拟分析,得到了3个成果:(1)巷道开挖完成后,巷道围岩最大主应力出现在巷道煤柱帮表面以及实体帮深部约2 m的位置,最大剪应力出现在巷道两帮位置;(2)巷道顶板和两帮在巷道表面上的位移均呈抛物线分布,且其最大值与巷道开挖推进距离呈"指数衰减式"增大关系;(3)巷道开挖过程中,巷道煤柱侧的塑性区范围要明显大于实体侧,巷道顶板靠近煤柱侧的塑性区范围大于另一侧,而巷道底板则基本不发生破坏,整个巷道围岩破坏范围约为1.5~2 m。  相似文献   

11.
针对采动巷道帮部围岩变形破坏剧烈、支护维护困难、扩帮施工工艺复杂等问题,以刘家梁矿复合顶板采动巷道为工程背景,采用理论分析、数值模拟和现场试验等综合研究方法,监测获取采动巷帮变形破坏规律,分析采动巷道围岩周边应力环境特征及其作用下的变形破坏形态。研究结果表明:工作面回采过程中,采动巷道区域出现支承压力集中程度增大的同时,围岩周边主应力的方向也随之偏转,导致巷帮出现较大的塑性破坏深度且最大巷帮破坏深度偏向于巷帮中部,引发普通支护强度无法有效控制的巷帮围岩大变形,造成支护体损坏;采用高延伸性、可持续提供支护力、围岩变形过程中不破断的支护材料是此类围岩控制的有效途径。据此研发适用于大变形巷帮围岩控制的高延伸性组合锚杆,该锚杆杆体延伸率超过20%,具有较高的尾部抗剪能力,并可在扩帮施工后继续使用,现场应用效果良好。  相似文献   

12.
为探究围岩受采动影响条件下巷道变形破坏与稳定性控制,以桑树坪二号井3309工作面运输平巷为工程背景,采用FLAC3D数值模拟方法分析“一掘二采”期间大断面巷道围岩主应力差分布特征,结合现场试验,揭示大断面巷道围岩非均匀大变形破坏机理,分析提出巷道围岩非均匀变形控制补强支护设计方案。研究结果表明:①一次回采和二次回采期间,巷道煤柱及煤壁两侧煤体峰值应力差分别为7.93MPa、12.96MPa,煤柱帮峰值应力远高于煤壁帮,两侧煤体呈非对称变形破坏特征|②与一次回采相比,二次回采期间3309工作面运输平巷煤柱帮主应力增大11.46MPa,塑性区范围从4.5m增加至煤柱宽度,煤壁帮主应力差增加27.46MPa,塑性区增加1.5m,巷道围岩处于高强度剪应力状态,易引起大变形破坏|③基于大断面巷道两侧煤体非均匀变形破坏特征,针对性提出“一长一短”两种补强支护方案,现场试验后巷道围岩稳定性控制效果良好。  相似文献   

13.
通过对深部倾斜煤层沿空掘巷掘、采两阶段围岩应力场与位移场的分析,揭示了该类巷道围岩非对称大变形特征:窄煤柱帮与底板变形量远大于实煤体帮及顶板,巷道整体断面收敛率大。产生该变形破坏特征的原因:1)巷道埋深大,围岩处于较高的应力环境中;2)护巷煤柱宽度及支护阻力过小,使其过早进入残余承载阶段;3)无支护底板作为变形破坏能量主要释放通道,加剧了巷道顶帮围岩整体下沉。通过对不同宽度护巷煤柱方案的数值模拟,合理确定了试验巷道护巷煤柱宽度及试验巷道支护技术与参数。工程实践表明,采用新支护技术后,巷道窄煤柱与底板非对称变形大变形得到了有效控制,保持了巷道长期稳定。  相似文献   

14.
赵志强  马念杰  郭晓菲  赵希栋  樊龙 《煤炭学报》2016,41(12):2932-2939
大变形回采巷道冒顶控制问题一直以来是制约煤矿安全高效回采的重大难题,根据巷道围岩蝶形塑性区理论,以保德矿大变形回采巷道围岩非均匀破坏为背景,分析了回采巷道采动应力场的非均匀演化规律及其作用下的塑性区形态特征。研究表明:1高偏应力环境下巷道围岩塑性区会呈现蝶形分布,蝶形塑性区具有方向性,蝶叶位置会随着主应力方向的变化而改变;2受采动影响后,回采巷道围岩中会产生较大偏应力,且最大主应力方向向回采工作面一侧发生倾斜偏转,使蝶叶位于巷道顶板;3顶板蝶叶内岩石遭到严重破坏,同时伴有巨大膨胀压力和强烈变形,当锚杆(索)不能承受蝶叶内围岩重量时,巷道便发生蝶叶型冒顶。提出采用接长锚杆控制大变形巷道蝶叶型冒顶的方法,现场应用效果良好,为大变形回采巷道冒顶控制提供了新手段。  相似文献   

15.
对小峪煤矿4801长壁工作面巷道在不同开采阶段,帮部支承压力分布特征进行了研究.研究结果表明:三巷道掘成后,中间巷道两帮围岩破坏深度大,且应力集中系数较高;两边巷道靠近中间巷的帮部围岩破坏深度比靠近外边的帮部围岩破坏深度要大,相应的应力集中程度也较高,但都小于中间巷道的两帮.上区段工作面采过后,由于巷道上覆破断块体的旋转下沉,靠近上区段采空区的煤柱压力增大,煤柱的塑性破坏区域加深,应力集中向岩体深部转移,在所有巷道和煤柱帮部中,靠近上区段采空区的破坏区域大,相应的应力集中程度也高;下区段工作面采过后,由于巷道上覆破断块体的旋转下沉,靠近下区段采空区的煤柱压力增大,煤柱的塑性破坏区域加深,应力集中向岩体深部转移.  相似文献   

16.
巷内预充填无煤柱掘巷技术可有效解决留窄煤柱沿空掘巷存在煤炭资源浪费的问题,阐述了该无煤柱开采方法的原理,采用数值模拟综合分析了巷内预充填无煤柱掘巷"二次掘采"过程中围岩的应力分布及变形破坏特征,总结了充填体在"二次掘采"过程中的作用机理。结果表明:在"二次掘采"过程中充填体受力状态较复杂,且始终处于高应力状态;本工作面回采阶段应力峰值向实体煤侧转移;沿空巷道顶板在靠近充填体上部的顶煤发生压剪破坏切落下沉,巷道浅部的顶板发生拉伸破坏,同时顶板层间发生剪切错动离层,实体煤帮在高应力作用下发生压剪破坏。  相似文献   

17.
为研究采空区遗留煤柱下特厚煤层软弱顶板回采巷道围岩变形特征,采用FLAC^(3D)有限差分程序系统分析了无支护条件下巷道围岩的变形破坏特征。研究结果表明:特厚煤层回采巷道首先在拱肩及两侧顶角产生剪切破坏,且随时间变化顶板岩层发生明显离层,塑性破坏区范围逐渐向深部扩展,巷道顶板整体变形严重。现场生产时,应加强回采巷道支护系统应力位移的监测监控,避免围岩的过度变形破坏,且巷道支护时应坚持高强恒阻让压互补的支护原则。  相似文献   

18.
沿空掘巷作为煤矿回采巷道布置的一种主要技术,合理的护巷煤柱宽度是影响回采巷道围岩稳定的重要因素。基于理论分析和UDEC数值模拟,以色连二矿12404工作面为研究背景,研究了不同宽度护巷煤柱沿空掘巷掘进和后期维护应用过程中的应力场分布规律,分析了煤柱宽度对沿空巷道围岩位移变化规律和围岩塑性区分布及发育特征。研究结果表明:煤柱宽度越大,其内的应力峰值越大,但峰值区距巷道边缘越远;巷道围岩位移量在10 m煤柱时出现较大的减少量,护巷效果较为明显,综合塑性区的分布情况及煤炭资源的高回收率,确定护巷煤柱宽度为10 m。  相似文献   

19.
针对深部软碎煤体巷道围岩大变形破坏的控制难题,以某矿围岩控制难度极大的深部软碎煤体孤岛工作面留小煤柱沿空掘巷为工程背景,分析了煤体巷道围岩控制的主要难点;基于FLAC3D数值模拟软件研究了留小煤柱掘巷围岩大变形破坏机制。结果表明:大采高工作面回采扰动引起围岩应力调整卸荷后,掘巷上覆顶板荷载主要由实体煤帮承载,得出留小煤柱掘巷围岩应力峰值区主要位于实体煤帮及其肩角深处,其垂直应力集中系数高达3.04,阐明了掘巷实体煤帮顶板肩角、煤柱帮及实体煤帮浅部塑化围岩是关键控制区域。明晰了留小煤柱掘巷稳定后顶板、实体煤及其煤柱帮塑性破坏区的延伸宽度最大分别为5.88、2.50、3.00 m,揭示了掘巷围岩分区域非对称破坏机制。分析阐明了掘巷支护设计时需将锚索等支护构件的锚固基础位于围岩深部较完整弹性区内,基于此提出了锚梁网支护+槽钢锚索加固+注浆改性等分区域联合支护技术,通过现场工程实践证实采取高强度支护加固技术及注浆改性措施有效改善了深部煤岩体软碎且易发生大变形破坏的留小煤柱掘巷围岩应力状态,试验段掘巷顶板及两帮围岩变形量均控制在500 mm以内,保障了大采高工作面的安全有序回采,为此类深部软碎煤...  相似文献   

20.
为研究因小煤矿开采形成的空巷对于工作面回采巷道稳定性的影响,并选取合理的支护方式及参数,采用FLAC~(3D)软件对工作面不断推进时不同支护条件下,对受空巷影响的工作面运输平巷围岩稳定性进行了数值分析,且对优化支护后的巷道顶板围岩结构实施钻孔窥视。结果表明:空巷影响下工作面应力重分布使空巷煤柱边缘应力集中,造成附近运输平巷垂直应力骤增且塑性区范围扩大;合理支护方式可使巷道围岩塑性区范围及围岩变形得到明显改善,当空巷进入工作面超前应力影响范围内,巷道顶底板变形量急剧增加;在优化支护方案作用下空巷附近运输平巷顶板岩层裂隙发育少、完整性较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号