首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper describes an hybrid procedure for mechanical characterization of biological membranes. The in-plane displacement field of a glutaraldehyde treated bovine pericardium patch obtained with an equi-biaxial tension test is measured with intrinsic moiré and then compared with finite element predictions. Preliminary analysis of moiré patterns observed in the experiments justifies the assumption of the constitutive model based on transversely isotropic hyperelasticity. In order to determine the 16 hyperelastic constants included in the constitutive model and the fiber orientation, the difference Ω between displacement values measured with moiré and their counterpart determined numerically is minimized by means of multi-level and multi-point simulated annealing. Results clearly demonstrate the efficiency of the identification procedure presented in this research: in fact, residual difference between experimental data and numerical values of in-plane displacements is less than 2%. In order to validate the entire identification process, another experimental test is conducted by inflating the same specimen. Out-of-plane displacements, now measured with projection moiré, are compared with predictions of a new finite element model reproducing the experimental test. The 16 hyper-elastic constants previously determined are given in input to the inflation test FE model. Remarkably, experimental and numerical results are again in excellent agreement: maximum percent error on w-displacement is less than 3%.  相似文献   

2.
This paper is devoted to the persistence of periodic orbits under perturbations in dynamical systems generated by evolutionary equations, which are not smoothing in finite time, but only asymptotically smoothing. When the periodic orbit of the unperturbed system is non-degenerate, we show the existence and uniqueness of a periodic orbit (with a minimal period near the minimal period of the unperturbed problem) by using “modified” Poincaré methods. Examples of applications, including the perturbed hyperbolic Navier–Stokes equations, systems of damped wave equations and the system of second grade fluids, are given.  相似文献   

3.
ABSTRACT

The semi-analytical method of design sensitivity analysis that is widely used for calculating derivatives of static response with respect to design variables for structures modeled by finite elements is studied in this paper. It is shown that the method can have serious accuracy problems for shape design variables in structures modeled by beam, plate, truss, frame, and solid elements. Errors are shown to be associated with an incompatibility of the sensitivity field with the structure. An error index is developed to test the accuracy of the semi-analytical method. It characterizes the difference in errors between a general finite difference method and the semi-analytical method. A method for improving the accuracy of the semi-analytical method (when possible) is provided. Examples are presented to demonstrate the use of the error index.  相似文献   

4.
We present a variant of Newton’s method for computing travelling wave solutions to scalar bistable lattice differential equations. We prove that the method converges to a solution, obtain existence and uniqueness of solutions to such equations with a small second order term and study the limiting behaviour of such solutions as this second order term tends to zero. The robustness of the algorithm will be discussed using numerical examples. These results will also be used to illustrate phenomena like propagation failure, which are encountered when studying lattice differential equations. We finish by discussing the broad application range of the method and illustrate that higher dimensional systems exhibit richer behaviour than their scalar counterparts.  相似文献   

5.
Yu  J. H.  McWilliams  B. A.  Kaste  R. P. 《Experimental Techniques》2016,40(5):1359-1367
Experimental Techniques - Quasi-static tensile test is a common, yet fundamental, experiment in determining the mechanical properties of materials. Often, the determination of the equivalent...  相似文献   

6.
STABILITYFORTHEEQUILIBRIUMSTATEOFCHAPLYGIN’SSYSTEMSZhuHaiping(朱海平)ShiRongchang(史荣昌)MeiFengxiang(梅凤翔)(pekingInstitrteofTechnol...  相似文献   

7.
Luigi Galgani 《Meccanica》2012,47(7):1723-1735
Carlo Cercignani was known all over the world for his works on the Boltzmann equation and on kinetic theory. There was however another aspect of his scientific life, which is not much known. Namely, his interest for the foundations of physics, in particular for the possibility of understanding quantum mechanics through classical mechanics, which he shared with several people in Milan. A review of such researches is given here, together with some personal recollections of him.  相似文献   

8.
The formal asymptotic expansion method is an attractive mean to derive simplified models for problems exhibiting a small parameter, such as the elastic analysis of beam-like structures. Usually this method is rigorously justified using convergence theorems Yu and Hodges, 2004. In this paper it is illustrated how the Saint-Venant’s solution naturally arises from the lowest order terms of an asymptotic expansion of the elastic state for the case of homogeneous isotropic beams. It is also highlighted that the Saint-Venant solutions corresponding to pure traction, bending and torsion involve the solution of the first-order microscopic problems, while for the simple bending problem, the solution of the second-order microscopic problems is needed. The second-order problems provide therefore a way to characterize the transverse shear behavior and the cross-sectional warping of the beam.  相似文献   

9.
When holes or hard elastic inclusions are closely located, stress which is the gradient of the solution to the anti-plane elasticity equation can be arbitrarily large as the distance between two inclusions tends to zero. It is important to precisely characterize the blow-up of the gradient of such an equation. In this paper we show that the blow-up of the gradient can be characterized by a singular function defined by the single layer potential of an eigenfunction corresponding to the eigenvalue 1/2 of a Neumann–Poincaré type operator defined on the boundaries of the inclusions. By comparing the singular function with the one corresponding to two disks osculating to the inclusions, we quantitatively characterize the blow-up of the gradient in terms of explicit functions. In electrostatics, our results apply to the electric field, which is the gradient of the solution to the conductivity equation, in the case where perfectly conducting or insulating inclusions are closely located.  相似文献   

10.
The Saint–Venant torsional problem for homogeneous, monoclinic piezoelectric beams is formulated in terms of Prandtl’s stress function and electric displacement potential function. The analytical approach presented in this paper generalizes the known formulation of Prandtl’s solution which refers to homogeneous elastic beams. The Prandtl’s stress function and electric displacement potential function satisfy the so called coupled Dirichlet problem (CDP) in the cross-sectional domain. A direct and a variational formulation are developed. Exact analytical solutions for solid elliptical cross-section and hollow circular cross-section and an approximate solution based on a variational formulation for thin-walled closed cross-section are presented.  相似文献   

11.
Consider a smooth bounded domain ${\Omega \subseteq {\mathbb{R}}^3}$ , a time interval [0, T), 0?<?T?≤?∞, and a weak solution u of the Navier–Stokes system. Our aim is to develop several new sufficient conditions on u yielding uniqueness and/or regularity. Based on semigroup properties of the Stokes operator we obtain that the local left-hand Serrin condition for each ${t\in (0,T)}$ is sufficient for the regularity of u. Somehow optimal conditions are obtained in terms of Besov spaces. In particular we obtain such properties under the limiting Serrin condition ${u \in L_{\rm loc}^\infty([0,T);L^3(\Omega))}$ . The complete regularity under this condition has been shown recently for bounded domains using some additional assumptions in particular on the pressure. Our result avoids such assumptions but yields global uniqueness and the right-hand regularity at each time when ${u \in L_{\rm loc}^\infty([0,T);L^3(\Omega))}$ or when ${u(t)\in L^3(\Omega)}$ pointwise and u satisfies the energy equality. In the last section we obtain uniqueness and right-hand regularity for completely general domains.  相似文献   

12.
A concise formulation is presented for the derivatives of Green’s functions of three-dimensional generally anisotropic elastic materials. Direct calculation for derivatives of the Green’s function on the Cartesian coordinate system is a common practice, which, however, usually leads to a complicated course. In this paper the Green’s function derived by Ting and Lee [Ting, T.C.T., Lee, V.G., 1997. The three-dimensional elastostatic Green’s function for general anisotropic linear elastic solids. The Quarterly Journal of Mechanics and Applied Mathematics 50 (3) 407–426] is extended to obtain the derivatives. Using a spherical coordinate system, the Green’s function can be shown as the composition of two independent functions, one depends only on the radial distance of the field point to the origin and the other is in spherical angles. The method of derivation is based on the total differential scheme and then takes its partial differentiation accordingly. With the application of Cauchy residue theorem, the contour integral can be evaluated in terms of the Stroh eigenvalues of a sextic equation. For the degenerate case, evaluation of residues at multiple poles is also given. Applications of the present result are made to examine the Green’s functions and stress components for isotropic and transversely isotropic materials. The results are in exact agreement with existing solutions.  相似文献   

13.
Goh  C. P.  Ratnam  M. M.  Ismail  H. 《Experimental Techniques》2016,40(3):1117-1127
Experimental Techniques - We propose a novel scanner-based digital image correlation (DIC) method to determine the full-field in-plane displacement as well as the Young’s modulus of...  相似文献   

14.
The second-grade fluid flow due to a rotating porous stretchable disk is modeled and analyzed. A porous medium is characterized by the Darcy relation. The heat and mass transport are characterized through Cattaneo-Christov double diffusions. The thermal and solutal stratifications at the surface are also accounted. The relevant nonlinear ordinary differential systems after using appropriate transformations are solved for the solutions with the homotopy analysis method (HAM). The effects of various involved variables on the temperature, velocity, concentration, skin friction, mass transfer rate, and heat transfer rate are discussed through graphs. From the obtained results, decreasing tendencies for the radial, axial, and tangential velocities are observed. Temperature is a decreasing function of the Reynolds number, thermal relaxation parameter, and Prandtl number. Moreover, the mass diffusivity decreases with the Schmidt number.  相似文献   

15.
Nonlinear Dynamics - This paper tackles the information of 133 RNA viruses available in public databases under the light of several mathematical and computational tools. First, the formal concepts...  相似文献   

16.
The deflection of micro-structures have been previously measured using optical interferometry methods. In this study, the classical phase-shift shadow moiré method (PSSM) was applied to measure the deflection of a silicon micro-cantilever and to determine the Young’s modulus of the cantilever material. The modulus value was determined from the profile based on deflection equation. A normal white light source and a grating of 40 line pairs per mm were used to generate the moiré fringes. Since the use of white light and high-resolution grating produces low contrast moiré fringes, the fringe visibility was enhanced by applying contrast enhancement and filtering techniques. The Young’s modulus of the silicon cantilever material was estimated to be 165.9 GPa with an uncertainty of ±11.3 GPa (6.8%). The experimental results show that the PSSM method can be successfully applied for characterizing micro-cantilevers. Comparison of the deflection profile from the proposed method and a commercial 3-D optical profiler showed that the measurement range and sensitivity of PSSM are not affected by the poor contrast images.  相似文献   

17.
The physical content of Maklakoffs tonometric (based on the loading of the cornea) method of measuring the intraocular pressure, widely used in medical practice, is discussed. For this purpose, we employ both the results of physical modeling of the eye described in the literature and the results of our own mathematical modeling based on the representation of the eyeball as a thin shell. The effect of the physical properties of the shell on the results of the modeling is investigated. Qualitative conclusions that follow from our study and may be of practical interest in measuring the intraocular pressure are discussed.__________Translated from Izvestiya Rossiiskoi Academii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, 2005, pp. 24–39. Original Russian Text Copyright © 2005 by Bauer, Lyubimov, and Tovstik.  相似文献   

18.
19.
In this paper we study the positivity of the determinant of the local electric field in a conducting composite. We know by [1] that the positivity holds true in two dimensions for any periodic structure. Using a different approach from [11] we prove that is also the case for a laminate microstructure in any dimension. However, and this is the main result of the paper, we provide an example of a two-phase three-dimensional periodic composite for which the determinant changes sign.  相似文献   

20.
For a homogeneous anisotropic and linearly elastic solid, the general expression of Young’s modulus E(n), embracing all classes that characterize the anisotropy, is given. A constrained extremum problem is then formulated for the evaluation of those directions n at which E(n) attains stationary values. Cubic and transversely isotropic symmetry classes are dealt with, and explicit solutions for such directions n are provided. For each case, relevant properties of these directions and corresponding values of the modulus are discussed as well. Results are shown in terms of suitable combinations of elements of the elastic tensor that embody the discrepancy from isotropy. On the basis of such material parameters, for cubic symmetry two classes of behavior can be distinguished and, in the case of transversely isotropic solids, the classes are found to be four. For both symmetries and for each class of behavior, some examples for real materials are shown and graphical representations of the dependence of Young’s modulus on direction n are given as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号