首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
H.J. Breunig 《Polyhedron》1984,3(6):757-758
(Me3Sn)3Sb and Fe2(CO)9 reacted to form (Me3Sn)2Fe(CO)4 in 79% yield. From (Me3E)3Sb(E = Si or Ge) and Fe2(CO)9 the complexes (Me3E)3SbFe(CO)4 were obtained  相似文献   

3.
Liu CW  Hung CM  Santra BK  Wang JC  Kao HM  Lin Z 《Inorganic chemistry》2003,42(25):8551-8556
The cluster (Cu8(mu8-Se)[S2P(OEt)2]6)0.54(Cu6[S2P(OEt)2]6)0.46 (2) was prepared in 78% yield from the reaction of Cu8(Se)[Se2P(OPr)2]6 (1) and NH4S2P(OEt)2 in toluene. The central selenide ion in 2 was characterized by 77Se NMR at delta -976 ppm. The simulated solid-state 31P NMR spectrum shows two components with an intensity ratio close to 55:45. The peak centered at 100.7 ppm is assigned to the 31P nuclei in the hexanuclear copper cluster, and that at 101.1 ppm is due to the octanuclear copper cluster. The single-crystal X-ray diffraction analysis confirms the cocrystallization structures of Cu8(Se)[S2P(OEt)2]6 (54%) and Cu6[S2P(OEt)2]6 (46%) (2: trigonal, space group R3, a=21.0139(13) A, c=11.404(3) A, gamma=120 degrees, Z=3). While the octanuclear copper cluster possesses a 3-fold crystallographic axis which pass through the Cu2, Se, and Cu(2A) atoms, the six copper atoms having the S6 point group symmetry in Cu6[S2P(OEt)2]6 form a compressed octahedron. The Cu8(mu8-Se) cubic core in Cu8(mu8-Se)[S2P(OEt)2]6 is larger in size than the metal core in Cu8(mu8-Se)[Se2P(OPr)2]6 (1) although the bite distance of the Se-containing bridging ligand is larger than that of the S ligand. To understand the nature of the structure contraction of the metal core and metal-mu8-Se interaction, molecular orbital calculations have been carried out at the B3LYP level of density functional theory. MO calculations suggest that Cu-mu8-Se interactions are not very strong and a half bond can be formally assigned to each Cu-mu8-Se bond. Moderate Cu...Cu repulsion exists, and it is the bridging ligands that are responsible for the observed Cu...Cu contacts. Hence, the S-ligating copper clusters have greater Cu...Cu separations because each Cu carries more positive charge in the presence of the more electronegative S-containing ligands.  相似文献   

4.
Room temperature stirring of H2Ru(P(OE)3)4 (E = Me and Et) and elemental sulfur in benzene afforded the optically active compounds Ru(P(OMe)3)3S5 (1) and Ru(P(OEt)3)3S5 (2). Compounds 1 and 2 are crystallized in the trigonal space group P31 with a = 14.231(10) A, c = 10.24(1) A, V = 1794(2) A3, and Z = 3, and orthorhombic space group P212121 with a = 15.393(5) A, b = 18.126(6) A, c = 12.421(4) A, V = 3465(1) A3, and Z = 4, respectively. Solutions of 1 and 2 did not show any optical activity since the bulk materials are racemic mixtures. The X-ray analyses also reveal that in both compounds polysulfide S5(2-) ion acts as a novel tridentate ligand, resulting in an asymmetric bicyclic RuS5 unit having three- and five-membered rings around the ruthenium atom. Fragmentation of the S5(2-) ring to S2- ion was observed in the presence of sulfur-abstracting reagents such as PR3 (R = Ph, OMe, and OEt) and also to S2(2-) ion when the compounds were reacted with RuCl2(P(OE)3)4 (E = Me and Et).  相似文献   

5.
6.
Coordination Chemistry of P‐rich Phosphanes and Silylphosphanes. XIX. [Co4P2(PtBu2)2(CO)8] and [{Co(CO)3}2P4tBu4] from Co2(CO)8 and tBu2P–P=P(Me)tBu2 Co2(CO)8 reacts with tBu2P–P=P(Me)tBu2 yielding the compounds [Co4P2(PtBu2)2(CO)8] ( 1 ) and [{η2tBu2P=P–P=PtBu2}{Co(CO)3}2] ( 2 a ) cis, ( 2 b ) trans. In 1 , four Co and two P atoms form a tetragonal bipyramid, in which two adjacent Co atoms are μ2‐bridged by tBu2P groups. Additionally, two CO groups are linked to each Co atom. In 2 a and 2 b , each of the Co(CO)3 units is η2‐coordinated to the terminal P2 units resulting in the cis‐ and trans‐configurations 2 a and 2 b . 1 crystallizes in the orthorhombic space group Pnnm (No. 58) with a = 879,41(5), b = 1199,11(8), c = 1773,65(11) pm. 2 a crystallizes in the monoclinic space group P21/n (No. 14) with a = 875,97(5), b = 1625,36(11), c = 2117,86(12) pm, β = 91,714(7)°. 2 b crystallizes in the triclinic space group P 1 (No. 2) with a = 812,00(10), b = 843,40(10), c = 1179,3(2) pm, α = 100,92(2)°, β = 102,31(2)°, γ = 102,25(2)°.  相似文献   

7.
Density functional, multireference configuration interaction, and modified valence configuration interaction calculations are used to investigate the electronic structure and spin coupling of the dinuclear [Fe(2)(hpdta)(H(2)O)(3)Cl] complex (H(5)hpdta = Hydroxypropane-1,3-diamine-N,N,N',N'-tetraacetic acid). The density functional calculations give evidence of both, states with local high-spin iron centres and states with local low-spin iron centres, the relative energy of which strongly depends on the functional. The splitting of states due to the spin coupling between the high-spin iron centres varies by more than a factor of two for different functionals. In an attempt to study to what extent it is possible to undertake configuration interaction calculations on such binuclear compounds, multireference configuration interaction calculations are performed on a [Fe(2)(OH)(5)(H(2)O)(3)(NH(3))(2)Cl] model complex. The results show that, when correlating only the ten iron 3d orbitals and the four valence orbitals of the bridging OH group, the calculated splitting is still by a factor of about 3 smaller than the value for the splitting inferred from magnetic susceptibility measurements. Modified valence configuration interaction calculations are performed to approximately take into account the influence of orbital relaxation effects of all occupied orbitals in the excited configurations. The exchange splitting is significantly increased, but still smaller than the experimental value.  相似文献   

8.
<正> M=1140.85, monoclinic, P21/c. a=12.748(2), b=14.320(2), c=23.118 (3)A,β=101.07(1)°, V=4141(2)A3, Z=4, Dc=1.830 g.cm-3. Final R=0.039 for 4160 reflections.The title compound is a rather irregular trinuclear molybdenum cluster having only two M-M bonds with two shorter Mo-Mo distances of 2.808(1), 2.839(1), and one longer Mo-Mo distance of 3.337(1)8. The existence of two Mo-Mo bonds is coincident with the electron counting for {Mo3} cluster core, and may be regarded as a result of the oxidation of a compound Mo3(μ3-S)(μ-S)2 (μ-L)[S2P(OEt)2]4(L') (L'=neutral ligands)1 characterized by us previously.  相似文献   

9.
10.
The accidental but intriguing synthesis of acetatobis(triphenylphosphine)dicarbonylmanganese(I), (CH3CO2)Mn(CO)2[P(C6H5)3]2, has been accomplished by the reaction of NaMn(CO)5 with (CH3)3SiCl followed by the addition of triphenylphosphine and acetic acid. A three-dimensional single-crystal X-ray diffraction analysis has shown an octahedral-like molecule containing a symmetrically oxygen-chelating acetate group, the first such group to be reported in a metal carbonyl complex. The two triphenylphosphine ligands occupy mutually trans positions with the two carbonyl ligands possessing the remaining cis sites in the octahedral complex. The compound crystallizes with four molecules in a monoclinic unit cell of space group symmetry P21c and of dimensions a = 17.744(2) Å, b = 9.692(1) Å, c = 20.004(2) Å, and β = 106.195(4)°. The relatively long MnO(acetate) bond lengths [2.066(6) and 2.069(7) Å] and the relatively short MnCO bond lengths [1.701(12) and 1.760(13) Å] and the relatively short MnP(C6H5)3 bond lengths [2.260(3) and 2.275(3) Å], compared to the corresponding MnCO and MnP(C6H5)3 bond lengths in other manganese carbonyl triphenylphosphine complexes, are rationalized on the basis that the acetate ligand in this molecule functions primarily as a σ-donor.  相似文献   

11.
Aminophosphonium salts [Ph3PN(H)R]BPh4 ( 1 ) [R = C6H5CH2 ( 1a ), 4‐CH3C6H4CH2 ( 1b ), C6H5 ( 1c )] were obtained by allowing hydride IrHCl2(PPh3)2{P(OEt)3} to react first with triflic acid and then with the organic azide RN3. The compounds were characterized spectroscopically and by X‐ray crystal structure determination of [Ph3PN(H)CH2C6H4‐4‐CH3]BPh4 ( 1b ). A reaction path for the formation of aminophosphonium cations is also proposed.  相似文献   

12.
Ultrafast X-ray absorption near edge spectroscopy has been carried out for photo excited iron pentacarbonyl in ethanol with 2 picosecond resolution. A temporal resolution limited dissociation process was observed, followed by the formation of the mono-substituted complex Fe(CO)(4)EtOH within a few tens of picoseconds. The measurements have been carried out with a newly developed X-ray absorption instrument at station 7 ID-C of the Advanced Photon Source. The results show that single picosecond temporal resolution can be achieved at a synchrotron beam line.  相似文献   

13.
Treatment of [Rh2Cl2(CO)2 {μ-(PhO)2PN(Et)P(OPh)2}2] with various reducing agents gives a number of products, the type depending on the conditions employed. The products isolated include [Rh2(CO)2{μ-(PhO)2PN(Et)P(OPh)2}2], [Rh2(CO)3{μ-(PhO)2PN(Et)P(OPh)2}2],and [Rh2HgCl(μ-H)(CO)2{μ-(PhO)2PN(Et)P(OPh)2}2]; the structure of the last complex was determined by X-ray diffraction.  相似文献   

14.
The title complex, trans‐bis(dimethylformamide‐κO)bis{N,N′‐N′′,N′′′‐tetra‐tert‐butyl[oxybis(phosphonic diamide‐κO)]}manganese(II) dichloride dihydrate, [Mn(C16H40N4O3P2)2(C3H7NO)2]Cl2·2H2O, is the first example of a bis‐chelate amido–pyrophosphate (pyrophosphoramide) complex containing an O[P(O)(NH)2]2 fragment. Its asymmetric unit contains half of the complex dication, one chloride anion and one water molecule. The MnII atom, located on an inversion centre, is octahedrally coordinated, with a slight elongation towards the monodentate dimethylformamide ligand. Structural features of the title complex, such as the P=O bond lengths and the planarity of the chelate ring, are compared with those of previously reported complexes with six‐membered chelates involving the fragments C(O)NHP(O), (X)NP(O) [X = C(O), C(S), S(O)2 and P(O)] and O[P(O)(N)2]2. This analysis shows that the six‐membered chelate rings are less puckered in pyrophosphoramide complexes containing a P(O)OP(O) skeleton, such as the title compound. The extended structure of the title complex involves a linear aggregate mediated by N—H...O and N—H...Cl hydrogen bonds, in which the chloride anion is an acceptor in two additional O—H...Cl hydrogen bonds.  相似文献   

15.
tBu2P‐P=P(Me)tBu2 reacts with [Fe2(CO)9] to give [μ‐(1, 2, 3:4‐η‐tBu2P1‐P2‐P3‐P4tBu2){Fe(CO)3}{Fe(CO)4}] ( 1 ) and [trans‐(tBu2MeP)2Fe(CO)3]( 2 ). With [(η2‐C8H14)2Fe(CO)3] in addition to [μ‐(1, 2, 3:4‐η‐tBu2P1‐P2‐P3‐P4tBu2){Fe(CO)2PMetBu2}‐{Fe(CO)4}] ( 10 ) and 2 also [(μ‐PtBu2){μ‐P‐Fe(CO)3‐PMetBu2}‐{Fe(CO)3}2(Fe‐Fe)]( 9 ) is formed. 1 crystallizes in the monoclinic space group P21/c with a = 875.0(2), b = 1073.2(2), c = 3162.6(6) pm and β = 94.64(3)?. 2 crystallizes in the monoclinic space group P21/c with a = 1643.4(7), b = 1240.29(6), c = 2667.0(5) pm and β = 97.42(2)?. 9 crystallizes in the monoclinic space group P21/n with a = 1407.5(5), b = 1649.7(5), c = 1557.9(16) pm and β = 112.87(2)?.  相似文献   

16.
17.
The asymmetric addend in the methanofullerene C61(CO2Me)[P(O)(OMe)2] polarizes and divides the fullerene shell into four nonequivalent fragments. According to DFT/PBE calculations, the most stable conformers of the methanofullerene C61(CO2Me)[P(O)(OMe)2] involve Coulomb interactions of the phosphoryl oxygen with one of the fullerene carbon atoms, which produces polarization of the corresponding fragment and asymmetry in bond lengths and atomic charges in the fullerene shell. Alternation and attenuation of changes in bond lengths along the conjugation branches was revealed.  相似文献   

18.
The iron complexes [(Et2Sb)4Fe4(CO)14] ( 1 ), [(nPr2Sb)4Fe3(CO)10] ( 2 ), [{(Me3SiCH2)2Sb}4Fe2(CO)6] ( 3 ), and [2‐(Me2NCH2)C6H4SbFe2(CO)8] ( 4 ) were prepared by reactions of distibanes with Fe2(CO)9. Compounds 1 – 4 were characterized by X‐ray diffraction, 1H NMR and IR spectroscopy as well as mass spectrometry; complex 1 was additionally characterized by density functional calculations.  相似文献   

19.
Two isomers of dithio-bis(t-butylphosphido)diiron hexacarbonyl, Fe2(CO)6(ButP)2S2, and trithio-bis(t-butylphosphido)diiron hexacarbonyl, Fe2(CO)6(ButP)2S3 were isolated from the reaction of the lithio compound Fe2(CO)6(butPLi)2 with sulfur monochloride, S2Cl2 at − 10°C. The new complexes were characterized by IR, 1H NMR and mass spectra and elemental analysis. The crystal and molecular structure of Fe2(CO)6(ButPS2PBut) (I) was determined by single crystal X-ray diffraction. Compound I crystallises in the orthorhombic system, space group Pna21 with a 2433.1(3), b 906.75(8), c 973.43(7) pm; Z = 4; dcalc 1.61 g cm−3; R1 = 0.044; R2 = 0.0515. The molecular symmetry of compound I is approximately C and the axis of the two sulfur atoms lies in the same plane which includes the two phosphorus atoms and the two PC bonds with the But groups. Reaction of the lithio compound Fe2(CO)6(ButPLi)2 with CH2I2 yielded Fe2(CO)6(ButP)2CH2, along with an iron cluster of unknown structure.  相似文献   

20.
The betain‐like SOC2(PPh3)2 ( 1a ) reacts with [Mn2(CO)10] in THF to produce the salt‐like complex [(CO)4Mn(SOC2{PPh3}2)2][Mn(CO)5] ( 2 ). 1a is bonded via the sulfur atoms which are arranged in trans position in the octahedral environment of the manganese atom. With InCl3 from CH2Cl2 solution the addition product [Cl3In(SOC2{PPh3}2)] ( 3 ) is obtained along with the salt (H2C{PPh3}2)[InCl4]2 ( 4 ), which is the result of proton abstraction from the solvent. The crystal structures of 2· 0.5THF and 4· CH2Cl2 are reported. The compounds are further characterized by IR and 31P NMR spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号