首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Besides granites of the ilmenite series, in which the anisotropy of magnetic susceptibility (AMS) is mainly controlled by paramagnetic minerals, the AMS of igneous rocks is commonly interpreted as the result of the shape-preferred orientation of unequant ferromagnetic grains. In a few instances, the anisotropy due to the distribution of ferromagnetic grains, irrespective of their shape, has also been proposed as an important AMS source. Former analytical models that consider infinite geometry of identical and uniformly magnetized and coaxial particles confirm that shape fabric may be overcome by dipolar contributions if neighboring grains are close enough to each other to magnetically interact. On these bases we present and experimentally validate a two-grain macroscopic numerical model in which each grain carries its own magnetic anisotropy, volume, orientation and location in space. Compared with analytical predictions and available experiments, our results allow to list and quantify the factors that affect the effects of magnetic interactions. In particular, we discuss the effects of (i) the infinite geometry used in the analytical models, (ii) the intrinsic shape anisotropy of the grains, (iii) the relative orientation in space of the grains, and (iv) the spatial distribution of grains with a particular focus on the inter-grain distance distribution. Using documented case studies, these findings are summarized and discussed in the framework of the generalized total AMS tensor recently introduced by Cañon-Tapia (Cañon-Tapia, E., 2001. Factors affecting the relative importance of shape and distribution anisotropy in rocks: theory and experiments. Tectonophysics, 340, 117–131.). The most important result of our work is that analytical models far overestimate the role of magnetic interaction in rock fabric quantification. Considering natural rocks as an assemblage of interacting and non-interacting grains, and that the effects of interaction are reduced by (i) the finite geometry of the interacting clusters, (ii) the relative orientation between interacting grains, (iii) their heterogeneity in orientation, shape and bulk susceptibility, and (iv) their inter-distance distribution, we reconcile analytical models and experiments with real case studies that minimize the role of magnetic interaction onto the measured AMS. Limitations of our results are discussed and guidelines are provided for the use of AMS in geological interpretation of igneous rock fabrics where magnetic interactions are likely to occur.  相似文献   

2.
Ceramics was used as model to investigate the pore fabric originated during ductile deformation. The magnetic anisotropy was used to measure the connected pore fabric after pore saturating by the ferromagnetic fluid. The ductile deformation of the ceramics was investigated through measurement of magnetic anisotropy of dry specimens. The character and symmetry of the pore fabric are compatible with those of the deformations forming the fabric of the ceramics.  相似文献   

3.
The Ardara pluton as part of the Donegal batholith was intruded into Neoproterozoic metasediments and metadolerites at mid-crustal levels. The emplacement mechanism of the Ardara granite is very controversial, and mechanisms ranging from diapirism, ballooning and stoping followed by nested diapirism have been proposed. Magnetic fabrics, rock fabrics and K/Ar dating of micas are used here to constrain the emplacement history. The compositional zoning of the Ardara pluton is clearly reflected in the different bulk magnetic susceptibilities between the outer quartz monzodiorite and the central granodiorite, whereas the intervening tonalite is of intermediate nature. The magnetic carriers are characterized by the anisotropy of the magnetic susceptibility (AMS), thermomagnetic measurements and through high field analyses (HFA). The separation of the ferrimagnetic and paramagnetic contributions revealed that biotite and magnetite control the AMS in the quartz monzodiorite. Both minerals are oriented in such a way that their summed contribution is constructive and originates from the shape fabric of magnetite and the texture of biotite. Biotite is responsible mainly for the AMS in the tonalite and granodiorite. The magnetic foliation can be directly related to the macroscopic foliation and also to the D4 structures in the country rocks. The foliation is consistent with the geometry of the roughly circular shape and has a mostly steep to vertical dip. Towards the central granodiorite the magnetic foliation dies out, although plagioclase texture measurements indicate a weak magmatic shape fabric. With the exception of the tail, the Kmax axes (magnetic lineation) vary from steeply to gently plunging. The so-called lineation factor is approximately 1.01 and therefore points to a less significant axial symmetry. These observations coincide with strain estimates on mafic enclaves that show a very consistent pattern of K ∼0 flattening strain. Texture analyses of biotite and quartz additionally support the observations made by the strain analyses and the magnetic fabric data. Microstructural investigations give evidence that the fabrics are associated with the emplacement over a range of temperatures from truly magmatic to high-temperature solid-state conditions. The age of the intrusion is still under discussion, but a new cooling age was determined by K/Ar dating of biotite at 403.7±8 Ma corresponding to a temperature range between 450 and 300°C. For a mylonite along the southern contact between the Ardara pluton and the country rock a K/Ar muscovite age of 378.8±7 Ma indicates a minimum age for the shear zone when the Ardara pluton must have already been cooled down below 350±50°C. Received: 28 January 1999 / Accepted: 28 December 1999  相似文献   

4.
ABSTRACT

Strong seismic anisotropy is observed in many subduction zones. This effect is attributed partly to subducting oceanic crust that is transformed into blueschist facies rocks. Because blueschist facies constituents such as glaucophane, epidote, and phengite show strong anisotropic elasticity, seismic anisotropy in subducting oceanic crust can be attributed to the lattice preferred orientation (LPO) of these minerals. We studied the deformation fabrics and seismic properties of phengite-rich epidote–glaucophane schists from the Franciscan Complex of Ring Mountain, California. The samples are composed mainly of glaucophane, epidote, and phengite. Some samples contain abundant phengite, the maximum being 40%. The LPOs of glaucophane showed that the [001] axes are aligned subparallel to lineation, and both (110) poles and [100] axes are aligned subnormal to foliation. The epidote [001] axes are aligned subnormal to foliation, with both (110) and (010) poles aligned subparallel to lineation. The LPOs of phengite are characterized by the maxima of [001] axes subnormal to foliation, and both (110) and (010) poles and [100] axes are aligned in a girdle subparallel to foliation. The phengite showed substantially strong seismic anisotropy (AVP = 42%, max.AVS = 37%). The glaucophane schist with abundant phengite showed significantly stronger seismic anisotropy (AVP = 30%, max.AVS = 23%) than the epidote–glaucophane schist (AVP = 13%, max.AVS = 9%). When the subduction angle of phengite-rich glaucophane schist is considered, the polarization direction of the fast S-waves for vertically propagating S-waves changed to a nearly trench-parallel direction for the subduction angle of 45?60°, and the S-wave anisotropy became stronger for vertically propagating S-waves with increasing subduction angles. Our data showed that phengite-rich blueschist facies rock can therefore contribute to the strong trench-parallel seismic anisotropy occurring at the subducting oceanic crust and at the slab–mantle interface in many subduction zones.  相似文献   

5.
Some fabrics of ferromagnetic minerals of metamorphic rocks have been studied by means of the magnetic susceptibility anisotropy; amphibolites from West Moravian crystallinicum were used as an example. These studies have shown that besides the differences in metamorphism and tectonics of the two main fabric units of that area (Moldanubicum, Moravicum) there exist differences in the content and fabric of ferromagnetic minerals as well.The fabric of ferromagnetic minerals in amphibolites of Moravicum originated probably simultaneously with the fabric of rock-forming minerals. On the other hand some of the ferromagnetic minerals in amphibolites from Moldanubicum are younger and their fabric originated later. The different character of the premetamorphic material of ortho-amphibolites has also been reflected in the intensity and the type of preferred orientation of ferromagnetic minerals.The results of our research show that the amphibolites of West Moravian crystallinicum can be put into different petrogenetic and geological-structural units through studies of their magnetic anisotropy.
Zusammenfassung Einige Gefüge der ferromagnetischen Mineralien der metamorphen Gesteine wurden am Beispiel der Amphibolite des westmÄhrischen Kristallins mit Hilfe der Anisotropie der magnetischen SuszeptibilitÄt untersucht. Es wurde festgestellt, da\ au\er den Unterschieden in Metamorphose und Tektonik der beiden geologischen Haupteinheiten dieses Gebietes (d. h. Moldanubikum und Moravikum) auch Unterschiede im Gehalt und im Gefüge der ferromagnetischen Mineralien deutlich sind.Das Gefüge der ferromagnetischen Mineralien in den Amphiboliten des Moravikums ist wahrscheinlich gleichzeitig mit dem Gefüge der gesteinsbildenden Mineralien entstanden, wÄhrend im Moldanubikum ein Teil der ferromagnetischen Mineralien offensichtlich jünger ist und ihr Gefüge spÄter entstand. Der andere Charakter des prÄmetamorphen Materials in den Orthoamphiboliten kommt auch in der IntensitÄt und im Typ der Vorzugsorientierung der ferromagnetischen Mineralien zum Ausdruck.Aus den Ergebnissen ergibt sich, da\ die Kenntnis der magnetischen Anisotropie die Einordnung der Amphibolite zu unterschiedlichen petrogenetischen und geologisch-strukturellen Einheiten im westmÄhrischen Kristallin ermöglicht.

Résumé Plusieurs «Gefüge» des minéraux ferromagnétiques des roches métamorphiques ont été étudiées à l'aide de l'anisotropie de la susceptibilité magnétique sur l'exemple d'amphibolites du cristallin de la Moravie de l'Ouest. On a constaté qu'à part des différences de métamorphisme et de tectonique des deux unités principales de cette région (Moldanubique et Moravique), il y a aussi des différences dans le volume et la «Gefüge» des minéraux ferromagnétiques.On a constaté que la «Gefüge» des mineraux ferromagnétiques dans des amphibolites du Moravique s'était produite probablement en mÊme temps que la structure des minéraux formant les roches, tandis qu'une partie des minéraux ferromagnétiques dans le Moldanubique pourrait Être plus jeune, sa «Gefüge » s'étant produite plus tard. Un caractère différent des matériaux prémetamorphiques dans les orthoamphibolites, s'est révélé, en mÊme temps, par l'intensité et le genre de l'orientation dominante de minéraux ferromagnétiques.Des résultats on peut déduire qu'à l'aide d'une étude de l'anisotropie magnétique, il est possible de classer les amphibolites dans les différents ensembles de petrogénese et de structures géologiques.

- . , ( ) . , , , . . , - - .
  相似文献   

6.
This study has investigated magnetic remanence, rock magnetism and anisotropy of magnetic susceptibility (AMS) in granulite and amphibolite grade metamorphic terranes of the Huabei Shield between Inner Mongolia in the west and the Bohai Sea in the east. Rock magnetic studies identify annealed metamorphic magnetite grains with multidomain properties as the remanence carriers; a widely recorded stable remanence was probably fixed by grain shape effects. Granulite facies terranes are typically between one and two orders more strongly magnetised than amphibolite terranes and AMS fabrics correlate mostly with metamorphic mineral fabrics observed in the country rocks. Progressive thermal demagnetisation identifies a range of two and three component structures resident in magnetite. An important component recognised as a partial or complete remagnetisation by Late Mesozoic–Tertiary tectonic/magmatic activity is present in basement at the southern margin of the outcrop (Miyun terrane) and where extensive granite plutonism has occurred (Zhunhua terrane). These components have directions corresponding to remanence in the Yunmeng Shan Granite (119–114 Ma, D/I=33/58°, 39 samples, a95=3.5°, palaeopole at 201°E, 64°N). Most remanence elsewhere was probably acquired during post-tectonic uplift and cooling of the basement between ∼2200 and 1850 Ma because palaeomagnetic directions are removed from the Phanerozoic palaeofield path and they are distinct from the palaeomagnetic record in the overlying Jixian Supergroup deposited at ∼1840–900 Ma. These latter magnetisations are considered reliable indicators of the palaeofield during Late Palaeoproterozoic times because deformation of overlying supracrustal rocks is mostly slight and no prominent deflection of magnetic remanence by magnetic fabrics is observed. Palaeofield directions and poles attributed to the time of uplift-related cooling are: Qian’an Terrane (D/I=215/71°, a95=9°, 17 samples, pole at 99°E, 10°N) and North Qianxi Terrane (D/I=44/−45°, a95=4°, 41 samples, pole at 79°E, 11°S). In addition, a more widely-preserved shallow northerly component correlates with a NW→E swathe of components recorded by uplift-related cooling within the Datong–Huan’an granulite terrane in the west of the shield. A preliminary Palaeo-Mesoproterozoic apparent polar wander path for the Huabei Shield is defined from the Palaeoproterozoic record in the metamorphic basement rocks and the Meso-Neoproterozoic record in the overlying Jixian Supergroup. It incorporates a loop between ∼2200 and 1850 Ma and exhibits a general east to west trend in subsequent times.  相似文献   

7.
Fractal-geometry techniques are widely applied to the quantification of complex rock structures. Important properties of such structures are (i) different scaling behaviour on different scales, (ii) inhomogeneity, and (iii) anisotropy. The current paper presents a special view on the quantification of these properties by classical and newly developed fractal-geometry methods, discusses advantages and disadvantages of special methods and outlines the correlations between structure quantifications and rock properties and structure-forming processes, presented in the literature.  相似文献   

8.
9.
Sakhalin has been affected by several phases of Cretaceous and Tertiary deformation due to the complex interaction of plates in the northwest Pacific region. A detailed understanding of the strain is important because it will provide constraints on plate-scale processes that control the formation and deformation of marginal sedimentary basins. Anisotropy of magnetic susceptibility (AMS) data were obtained from fine-grained mudstones and siltstones from 22 localities in Sakhalin in order to provide information concerning tectonic strain. AMS data reliably record ancient strain tensor orientations before significant deformation of the sediments occurred. Paleomagnetically determined vertical-axis rotations of crustal rocks allow rotation of the fabrics back to their original orientation. Results from southwest Sakhalin indicate a N035°E-directed net tectonic transport from the mid-Paleocene to the early Miocene, which is consistent with the present-day relative motion between the Okhotsk Sea and Eurasian plates. Reconstruction of early–late Miocene AMS fabrics in east Sakhalin indicates a tectonic transport direction of N040°E. In west Sakhalin, the transport direction appears to have remained relatively consistent from the Oligocene to the late Miocene, but it has a different attitude of N080°E. This suggests local deflection of the stress and strain fields, which was probably associated with opening of the northern Tatar Strait. A northward-directed tectonic transport is observed in Miocene sediments in southeast Sakhalin, mid-Eocene sediments in east Sakhalin, and in Late Cretaceous rocks of west and northern Sakhalin, which may be associated with northwestward motion and subduction of the Pacific Plate in the Tertiary period. The boundaries of the separate regions defined by the AMS data are consistent with present-day plate models and, therefore, provide meaningful constraints on the tectonic evolution of Sakhalin.  相似文献   

10.
In this contribution we present a review of the evolution of microstructures and fabric in ice. Based on the review we show the potential use of ice as an analogue for rocks by considering selected examples that can be related to quartz-rich rocks. Advances in our understanding of the plasticity of ice have come from experimental investigations that clearly show that plastic deformation of polycrystalline ice is initially produced by basal slip. Interaction of dislocations play an essential role for dynamic recrystallization processes involving grain nucleation and grain-boundary migration during the steady-state flow of ice. To support this review we describe deformation in polycrystalline ‘standard’ water-ice and natural-ice samples, summarize other experiments involving bulk samples and use in situ plane-strain deformation experiments to illustrate the link between microstructure and fabric evolution, rheological response and dominant processes. Most terrestrial ice masses deform at low shear stresses by grain-size-insensitive creep with a stress exponent (n ≤ 3). However, from experimental observations it is shown that the distribution of plastic activity producing the microstructure and fabric is initially dominated by grain-boundary migration during hardening (primary creep), followed by dynamic recrystallization during transient creep (secondary creep) involving new grain nucleation, with further cycles of grain growth and nucleation resulting in near steady-state creep (tertiary creep). The microstructural transitions and inferred mechanism changes are a function of local and bulk variations in strain energy (i.e. dislocation densities) with surface grain-boundary energy being secondary, except in the case of static annealing. As there is a clear correspondence between the rheology of ice and the high-temperature deformation dislocation creep regime of polycrystalline quartz, we suggest that lessons learnt from ice deformation can be used to interpret polycrystalline quartz deformation. Different to quartz, ice allows experimental investigations at close to natural strain rate, and through in-situ experiments offers the opportunity to study the dynamic link between microstructural development, rheology and the identification of the dominant processes.  相似文献   

11.
12.
The Eastern Layered Series of the Rum Layered Suite, NW Scotland, comprises a sequence of sixteen (30–150 m thick) cyclic units. The upper troctolite–olivine gabbro parts of each of these units exhibit small-scale modal layering and a pervasive, layer-parallel mineral lamination that is often associated with ‘soft-sediment’ deformation structures. A sporadic, macroscopic magmatic lineation measurable on mineral lamination surfaces is also observed in places. Anisotropy of magnetic susceptibility (AMS) fabrics were studied in three of these cyclic units, (8, 9, and 10) in the northern part of the Eastern Layered Series. Magnetic fabrics measured in the troctolites and gabbros yield one dominant trend in which magnetic foliations parallel magmatic layering and magnetic lineations trend NW–SE and plunge gently. Magnetic fabrics measured for two detailed traverses through Unit 10 on the northern side of Hallival also yield one dominant trend, similar to that measured elsewhere in the Eastern Layered Series. However, toward the centre of Unit 10 in each traverse, magnetic lineations sometimes plunge approximately downdip (SW) on the magnetic foliation planes. The implications of these results are discussed with reference to previous textural and fabric observations on Rum. A model is suggested in which weak linear arrangements of cumulus olivine and plagioclase crystals are developed due to slumping and soft-sediment deformation of unconsolidated crystal mushes during central sagging of the Rum Layered Suite.  相似文献   

13.
Gentoso, M. J., Evenson, E. B., Kodama, K. P., Iverson, N. R., Alley, R. B., Berti, C. & Kozlowski, A. 2012 (January): Exploring till bed kinematics using AMS magnetic fabrics and pebble fabrics: the Weedsport drumlin field, New York State, USA. Boreas, Vol. 41, pp. 31–41. 10.1111/j.1502‐3885.2011.00221.x. ISSN 0300‐9483. Thick, relatively homogeneous basal tills exposed in the drumlins and flutes of the Weedsport drumlin and flute field in New York State exhibit anisotropy of magnetic susceptibility (AMS) and pebble fabrics that are consistently oriented parallel to the streamlined bedforms. The pebble fabrics and AMS fabrics are concordant. In this study, six drumlins and five flutes were sampled. Thermally induced, incremental reduction of isothermal remanent magnetization indicates that AMS is caused by primarily elongate maghaemite grains. The orientations of principal axes of maximum susceptibility (k1) are generally parallel to pebble long‐axis orientations, and tend to plunge mildly up‐glacier. Fabric directions are generally parallel to drumlin long‐axis orientations, but deviate by 12°–23° from flute directions. Fabrics of the flutes are stronger and more unidirectional than those of the drumlins. These results support the use of AMS as a fast and objective method for characterizing fabrics in tills, and suggest hypotheses about basal processes linked to glacially streamlined landforms.  相似文献   

14.
Critical deformations in rock masses are frequently controlled by pre-existing discontinuities. In other cases, for example, Study of discontinuum models provides valuable physical spacing. Study of discontinuum models provides valuable physical insights into rock mass deformation behaviour that are not as apparent from continuum studies. Examples from both continuum analysis and discontinuum modelling by the distinct element methods are discussed. These examples include: in-situ deformation tests on columnar basalt. Development of kink bands in laminated rock. Deformation of jointed rock during fluid injection for energy production. Fracture generation in brittle rock under compression.  相似文献   

15.
岩石电子背散射衍射(EBSD)组构分析及应用   总被引:17,自引:1,他引:17  
刘俊来  曹淑云  邹运鑫  宋志杰 《地质通报》2008,27(10):1638-1645
电子背散射衍射(EBSD)技术是现代构造地质学与显微构造分析领域一项崭新的技术,它与现代高分辨率扫描电子显微镜和能谱分析设备结合,可以对块状样品中微米或纳米级尺度的颗粒进行晶体结构分析, 从而使微观结构、微区成分与结晶学数据结合起来,能够更精细地对比研究矿物和岩石显微构造,为岩石显微构造分析开辟了一个全新的领域。分析了EBSD技术的基本原理、系统构成、样品制备和工作程序。介绍了石英组构测量,极细粒物质(微角砾岩)的组构特点,二轴晶矿物(角闪石)的组构、变形机制和金属硫化物组构分析的应用实例,对于应用EBSD系统开展研究存在的一些问题进行了讨论。  相似文献   

16.
The bowing of natural stone panels is especially known for marble slabs. The bowing of granite is mainly known from tombstones in subtropical humid climate. Field inspections in combination with laboratory investigations with respect to the thermal expansion and the bowing potential was performed on two different granitoids (Cezlak granodiorite and Flossenbürg granite) which differ in the composition and rock fabrics. In addition, to describe and explain the effect of bowing of granitoid facade panels, neutron time-of-flight diffraction was applied to determine residual macro- and microstrain. The measurements were combined with investigations of the crystallographic preferred orientation of quartz and biotite. Both samples show a significant bowing as a function of panel thickness and destination temperature. In comparison to marbles the effect of bowing is more pronounced in granitoids at temperatures of 120°C. The bowing as well as the thermal expansion of the Cezlak sample is also anisotropic with respect to the rock fabrics. A quantitative estimate was performed based on the observed textures. The effect of the locked-in stresses may also have a control on the bowing together with the thermal stresses related to the different volume expansion of the rock-forming minerals.  相似文献   

17.
A large-scale avalanche of Earth material is modeled here as a granular flow using a distinct element numerical model PFC 2D. Such failures occur in a variety of geological settings and are known to occur frequently over geologic time-scales transporting significant volumes of material basinward. Despite this, they remain poorly understood. The model used here begins with a listric failure, typical of the flank collapse of a volcanic cone, and describes the movement of an assembly of several thousand particles from failure to deposition. Within the model, each particle possesses its own material properties and interacts with its immediate neighbors and/or the basal boundary during emplacement. The general mechanics of the particle assembly are observed by monitoring the stresses, displacements, and velocities of distinct sections of the avalanche body. We monitor the avalanches’ energy regime (e.g., gravitational influence, energy dissipation by friction, kinetic energy evolution, and avalanche body strain). The addition of colored markers of varying geometry to the pre-failure avalanche was also used to make qualitative observations on the internal deformation that occurs during avalanche emplacement. A general stretching and thinning of the avalanche is observed. Monitoring of vertical and horizontal variations in stress, strain, porosity, and relative particle stability indicate that the lower more proximal sections of the avalanche are subject to higher stresses. These stresses are observed to be most significant during the initial phases of failure but decline thereafter; a situation likely to be conducive to block fragmentation and in developing a basal shear layer in real-world events. The model also shows how an avalanche which is initially influenced purely by gravity (potential energy) develops into a fully flowing assemblage as downslope momentum is gained and kinetic energy increases. The horizontal transition where the failure meets the run-out surface is recognized as a key area in emplacement evolution. The model has particular relevance to volcanic flank collapses and consequently the implications of the model to these types of failure and the geological products that result are considered in detail although the model is relevant to any form of large-scale rock or debris avalanche.  相似文献   

18.
柴肇云  张鹏  郭俊庆 《岩土力学》2014,299(2):346-350
采用自主开发研制的软岩膨胀试验装置,对新生代煤系地层中泥质岩进行膨胀试验研究,分析了泥质岩膨胀各向异性以及循环胀缩特性,并结合SEM试验结果,探讨了膨胀各向异性和循环胀缩特性的形成机制。结果表明:泥质岩膨胀性随岩样端面与层理面夹角的增大而减小,具有明显的各向异性;泥质岩所含黏土矿物颗粒排列的择优取向导致了泥质岩吸水膨胀的各向异性,可通过膨胀各向异性系数进行定量描述;随着干湿循环次数的增加,泥质岩绝对膨胀率增加,趋于某一稳定值;相对膨胀率和相对收缩率降低,亦趋于某一稳定值;泥质岩循环胀缩特性是干湿循环过程中矿物颗粒排列方式改变和微裂隙萌生扩展的能量耗散共同作用的结果。  相似文献   

19.
An applicable interpretation of fabrics should be based mainly on geometrical considerations in order to cover available field data. Therefore a theory on the formation of foldtype fabrics including congruent and concentric flexural-slip folds as well as kink bands in materials subjected to rhombic and different monocline strain types is derived by means of particle motion fields for homogeneous and isotropic bodies. The analysis of experimental results and their comparison with field observations largely confirms the theory and contributes to its improvement. Some trends can be established: With increasing monocline character of the strain type, the probability of concentric and congruent flexural-slip folding is reduced. It is substituted by kink band formation. While the portion of monocline strain is enlarged with depth, rhombic fold symmetry indicates, in the realm of elastic-plastic behaviour, the proximity of the surface of the earth or of a detachment surface. With gradual increase of the rock anisotropy, the development of shear faults, kink folds and, finally, congruent and concentric flexural-slip folds is favoured.  相似文献   

20.
An applicable interpretation of fabrics should be based mainly on geometrical considerations in order to cover available field data. Therefore a theory on the formation of foldtype fabrics including congruent and concentric flexural-slip folds as well as kink bands in materials subjected to rhombic and different monocline strain types is derived by means of particle motion fields for homogeneous and isotropic bodies. The analysis of experimental results and their comparison with field observations largely confirms the theory and contributes to its improvement. Some trends can be established: With increasing monocline character of the strain type, the probability of concentric and congruent flexural-slip folding is reduced. It is substituted by kink band formation. While the portion of monocline strain is enlarged with depth, rhombic fold symmetry indicates, in the realm of elastic-plastic behaviour, the proximity of the surface of the earth or of a detachment surface. With gradual increase of the rock anisotropy, the development of shear faults, kink folds and, finally, congruent and concentric flexural-slip folds is favoured.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号