首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Two types of β-Si3N4 were sintered at 1900 °C one for 8 h and the other for 36 h by using Yb2O3 and ZrO2 as sintering additives. The latter specimen was further annealed at 1700 °C for 100 h to promote grain growth. The microstructures of the sintered materials were investigated by SEM, TEM, and EDS. The thermal conductivities of the specimens were 110 and 150 Wm−1K−1, respectively. The sintered material which possessed 110 Wm−1K−1 had numerous small precipitates that consisted of Yb, O and N elements and internal dislocations in the β-Si3N4 grains. In the sintered material with 150 Wm−1K−1 neither precipitates nor dislocations were observed in the grains. The microscopic evidence indicates that the improvement in the thermal conductivity of the β-Si3N4 was attributable to the reduction of internal defects of the β-Si3N4 grains with sintering and annealing time as the grains grew.  相似文献   

2.
Mean-field micromechanics model, the rule of mixture is applied to the prediction of the thermal conductivity of sintered β-Si3N4, considering that the microstructure of β-Si3N4 is composed of a uniform matrix phase (which contains grain boundaries and small grains of Si3N4) and the purified large grains (⩾2 μm in diameter) of Si3N4. Experimental results and theoretical calculations showed that the thermal conductivity of Si3N4 is controlled by the amount of the purified large grains of Si3N4. The present study demonstrates that the high thermal conductivity of β-Si3N4 can be explained by the precipitation of high purity grains of β-Si3N4 from liquid phase.  相似文献   

3.
Various microstructures of β-Si3N4 were fabricated, with or without the addition of β-Si3N4 seed particles to high-purity β-Si3N4 powder, using Yb2O3 and ZrO2 as sintering additives, by gas-pressure sintering at 1950 °C for 16 h. The thermal conductivity of the specimen without seeds was 140 W·(m·K)−1, and the specimen exhibited a bimodal microstructure with abnormally grown grains. The thermal conductivity of the specimen with 24 vol.% seed addition was 143 W·(m·K)−1, and this specimen had the bimodal microstructure with finer grain size than that without the seeded material, but maintained the same amount of large grains (⩾2 μm in diameter) as in the specimen without the seeds. This finding indicates that the thermal conductivity of β-Si3N4 is controlled by the amount of reprecipitated large grains, rather than by the grain size of the β-Si3N4.  相似文献   

4.
The effect of YH2 on densification, microstructure, and thermal conductivity of Si3N4 ceramics were investigated by adjusting the amount of YH2 in the range of 0–4 wt% using a two-step sintering method. Native SiO2 was eliminated, and Y2O3 was in situ formed by a metal hydride reduction reaction, resulting in various Y2O3/SiO2 ratios. Full densification of YH2-doped samples could be achieved after sintering at 1900 °C for 4 h. The Y2O3/SiO2 ratio had a significant influence on the composition of crystalline secondary phases. Besides, the increased Y2O3/SiO2 ratio is conducive not only to the grain growth but also to the reduction of activity of SiO2 in the liquid phase, resulting in enlarged purified grains, reduced volume fraction of intergranular phases and increased Si3N4-Si3N4 contiguity. Ultimately, the thermal conductivity increased by 29 % from 95.3 to 123.0 W m−1 K−1 after sintering at 1900 ℃ for 12 h by the substitution of Y2O3 with YH2.  相似文献   

5.
The microstructural evolution of pressureless sintered silicon nitride ceramics prepared from different particle sizes of β-Si3N4 as starting powders, has been investigated. When the specimen prepared from as-received β-powder of 0.66 μm in average size, was sintered at 1850°C, equiaxed β-Si3N4 grains were observed. As the size of the initial β-powder went down to 0.26 μm, however, the growth of elongated grains was enhanced, which resulted in a whisker-like microstructure similar to that made from α-starting powder. When the sintering temperature was increased to 2000°C, the elongated grains were also developed even in the specimen made from 0.66 μm β-powder. The observed results were discussed with relation to the two dimensional nucleation and growth theory for faceted crystals. In addition, fracture toughness of the specimen consisting of elongated grains, which was prepared from finer powders, increased.  相似文献   

6.
In this work, the self-reinforced silicon nitride ceramics with crystal seed of β-Si3N4 particles were investigated. Firstly, the seeds were prepared by heating of α-Si3N4 powder with Yb2O3 and MgO, respectively. Then the self-reinforced silicon nitride ceramics were obtained by HP-sintering of α-Si3N4 powder, Yb2O3 and the as-prepared seeds which were not treated with acid and/or alkali solution. The results indicated that the introduction of seed with Yb2O3 could obviously increase the toughness and room temperature strength of the ceramics. Furthermore, its high temperature strength (1200 °C) could nearly keep higher value as the one of room temperature measured from unreinforced ceramic. However, the seed with MgO abruptly decrease the high temperature strength of the ceramics. The SEM and TEM characterization showed that the rod-like seed particle could favor the toughness and the presence of the Mg promote the formation of crystalline secondary phase.  相似文献   

7.
A novel ZrSi2–MgO system was used as sintering additive for fabricating high thermal conductivity silicon nitride ceramics by gas pressure sintering at 1900°C for 12 hours. By keeping the total amount of additives at 7 mol% and adjusting the amount of ZrSi2 in the range of 0-7 mol%, the effect of ZrSi2 addition on sintering behaviors and thermal conductivity of silicon nitride were investigated. It was found that binary additives ZrSi2–MgO were effective for the densification of Si3N4 ceramics. XRD observations demonstrated that ZrSi2 reacted with native silica on the Si3N4 surface to generate ZrO2 and β-Si3N4 grains. TEM and in situ dilatometry confirmed that the as formed ZrO2 collaborated with MgO and Si3N4 to form Si–Zr–Mg–O–N liquid phase promoting the densification of Si3N4. Abnormal grain growth was promoted by in situ generated β-Si3N4 grains. Consequently, compared to ZrO2-doped materials, the addition of ZrSi2 led to enlarged grains, extremely thin grain boundary film and high contiguity of Si3N4–Si3N4 grains. Ultimately, the thermal conductivity increased by 34.6% from 84.58 to 113.91 W·(m·K)−1 when ZrO2 was substituted by ZrSi2.  相似文献   

8.
The effects of β-Si3N4 whiskers on the thermal conductivity of low-temperature sintered borosilicate glass–AlN composites were systematically investigated. The thermal conductivity of borosilicate glass–AlN ceramic composite was increased from 11.9 to 18.8 W/m K by incorporating 14 vol% β-Si3N4 whiskers, and high flexural strength up to 226 MPa were achieved along with low relative dielectric constant of 6.5 and dielectric loss of 0.16% at 1 MHz. Microstructure characterization and percolation model analysis indicated that thermal percolation network formation in the ceramic composites led to the high thermal conductivity. The crystallization of the borosilicate microcrystal glass also contributed to the enhancement of thermal conductivity. Such ceramic composites with low sintering temperature and high thermal conductivity might be a promising material for electronic packaging applications.  相似文献   

9.
《Ceramics International》2021,47(18):25449-25457
A dense β-Si3N4 coating toughened by β-Si3N4 nanowires/nanobelts was prepared by a combined technique involving chemical vapor deposition and reactive melt infiltration to protect porous Si3N4 ceramics in this work. A porous β-Si3N4 nanowires/nanobelts layer was synthesized in situ on porous Si3N4 ceramics by chemical vapor deposition, and then Y–Si–Al–O–N silicate liquid was infiltrated into the porous layer by reactive melt infiltration to form a dense composite coating. The coating consisted of well-dispersion β-Si3N4 nanowires/nanobelts, fine β-Si3N4 particles and small amount of silicate glass. The testing results revealed that as-prepared coating displayed a relatively high fracture toughness, which was up to 7.9 ± 0.05 MPa m1/2, and it is of great significance to improve thermal shock resistance of the coating. After thermal cycling for 15 times at ΔT = 1200 °C, the coated porous Si3N4 ceramics still had a high residual strength ratio of 82.2%, and its water absorption increased only to 6.21% from 3.47%. The results will be a solid foundation for the application of the coating in long-period extreme high temperature environment.  相似文献   

10.
Isobaric heat capacities of β-Si3N4 and γ-Si3N4 were measured at temperatures between 1.8 and 309.9 K with a thermal relaxation method. The measured heat capacities of γ-Si3N4 are smaller than those of β-Si3N4 in this temperature range. Using these data, we determined the standard entropies of β-Si3N4 and γ-Si3N4 to be 62.30 J·mol−1 K−1 and 51.79 J·mol−1 K−1, respectively. The equilibrium phase boundary between β-Si3N4 and γ-Si3N4 was calculated using these values and thermodynamic parameters reported in previous studies. The obtained equilibrium phase transition pressure at 2000 K is 11.4 GPa. It is lower than the experimental pressures at which γ-Si3N4 was synthesized in previous studies. The calculated Clapeyron slope at this temperature is 0.6 MPa K−1, which is consistent with those of theoretical studies.  相似文献   

11.
This report describes an investigation of the synthesis of β-Si3N4 particles from α-Si3N4 particles. The β fraction of Si3N4 particles was found to depend on temperature, heating time, and the type of crucibles in which the Si3N4 particles were heated. When Si3N4 particles were heated in a crucible made of carbon, most α-Si3N4 particles converted to β-Si3N4 after heating at 2000°C for 90 min in an atmosphere of N2 of 9 kgf/cm2. The morphology of the resulting β-Si3N4 particles appeared as a whisker shape. When Si3N4 particles were heated in a crucible made of boron nitride, most α-Si3N4 particles converted to β-Si3N4 after heating at 2000°C for 480min in an atmosphere of N2 of 9kgf/cm2. The resulting morphology was equiaxed. It is suspected that the transformation occurs via the gas phase and is affected by the partial pressure of oxygen in the atmosphere.  相似文献   

12.
Inter-granular glassy films (IGFs) are ubiquitous in structural ceramics and they play a critical role in defining their properties. The detailed origin of IGFs has been debated for decades with no firm conclusion. Herein, we report the result of quantum mechanical modeling on a realistic IGF model in β-Si3N4 that unravels the fundamental reason for its development. We calculate the electronic structure, interatomic bonding, and mechanical properties using ab initio density functional theory with parallel calculations on crystalline β-Si3N4, α-Si3N4, γ-Si3N4, and Si2N2O. The total bond order density—a quantum mechanical metric characterizing internal cohesion—of the IGF model and crystalline β-Si3N4 are found to be identical. Detailed analysis shows that weakening of the bonds in the glassy film is compensated by strengthening of the interfacial bonds between the crystalline grain and the glassy layer. This provides a natural explanation for the ubiquitous existence of IGFs in silicon nitride and other structural ceramics. Moreover, the mechanical properties of this IGF model reveal its structural flexibility due to the presence of the less rigid glassy layer. This work demonstrates that high-level computational modeling can now explain some of the most intriguing phenomena in nanoscale ceramic materials.  相似文献   

13.
By using the Si3N4 ceramic specimens prepared with fine and coarse α-Si3N4 powders, respectively, the phase transformation from α- to β-Si3N4 and concurrent microstructural evolution during sintering were monitored. For the compact prepared with fine powder, the α/β transformation was completed much earlier than the coarse powder. The higher fraction of pre-existing β-grains in fine powder and its higher reactivity compared to those of coarse one are likely to cause a rapid phase transformation. The growth rate of β-Si3N4 grains at the expense of α-Si3N4 during phase transformation stage was quite significant while that after they impinge each other was very limited. As a result, the specimens prepared with coarse and fine initial α-Si3N4 powders resulted in coarse and fine grained β-Si3N4 ceramics, respectively. The specimen prepared with mixture of fine and coarse α-Si3N4 powders exhibited the microstructure containing a few elongated large grains and showed an increased value of fracture toughness.  相似文献   

14.
Fused silica ceramics are widely applied for radome materials, crucibles, and vanes, but the mechanical properties were deteriorated due to the cristobalite crystallization. The fused silica ceramics added with by β-Si3N4 whiskers were prepared by a slip-casting method to retard the cristobalite crystallization. The influences of the sintering environments and the β-Si3N4 whiskers on the microstructure and phase structure were investigated. The silanol (Si-(OH)n) and oxygen vacancies (VO) in the fused silica in formed in different conditions were studied by Fourier Transform Infra-Red (FT-IR) and X-ray photoelectron spectroscopy (XPS), and the results indicated that the ball-milled produced a large amount of the silanol groups onto the surface of the fused silica particles. The fused silica heated in the vacuum created the maximum oxygen vacancies (24.2%) on the surfaces. Silanol groups reacted with the β-Si3N4 whiskers, and the O atoms in the silanol groups were fixed into the bulk materials. And the crystallization kinetics and the activation energy of Si3N4w/SiO2 ceramics at the temperature ranging from 1200 to 1400°C were calculated based on the JMA(Johnson-Mehl-Avrami) model. The activation energy of the fused silica ceramics with the addition of the β-Si3N4 is 506.2 kJ/mol, increased by 23.6% than that of the pure fused silica ceramic.  相似文献   

15.
The agglomeration of nickel-coated graphite (NCG) in epoxy resin (EP) composites leads to low electrical conductivity of EP composites, which limits their development in electronic devices and multilayer circuits. In order to improve the electrical and thermal conductivity of NCG/EP composites, ethylenediamine (EDA) was used to modify NCG and compared with pure NCG-filled EP composites. It was found that the conductive effect of modified composites with 20 wt% filler is better than that of unmodified composites with 40 wt% filler. The results of Fourier transform infrared spectroscopy and thermogravimetric analysis of EDA-modified NCG (ENCG) showed that a coordination adsorption reaction occurred between EDA and NCG, forming N–Ni coordination bonds. When the filling amount of ENCG was 40 wt%, the conductivity and thermal conductivity of the composite are improved most significantly. The volume resistivity was reduced from 2.636 to 0.109 Ω cm, a decrease of 95.85%, and the thermal conductivity was improved from 0.517 to 0.968 W/(m K), an increase of 87.23%, respectively. Meanwhile, ENCG has better dispersion in the EP matrix than NCG.  相似文献   

16.
The well-dispersed rod-like β-Si3N4 crystals have been prepared by combustion synthesis with the addition of carbon. The added carbon helps to separate Si particles and remove the SiO2 oxide layer, and thus reduces the agglomeration of β-Si3N4 crystals. By adding carbon, the reaction temperature and the width of β-Si3N4 crystals are decreased, but the aspect ratio of β-Si3N4 crystals is increased. The well-dispersed β-Si3N4 crystals with an average width of 0.84 μm and aspect ratio of 2.3 are produced by adding 2 wt% carbon. When 5 wt% carbon is added, the reaction temperature is too low and the nitridation of Si becomes incomplete, and at the same time much SiC occurs in the product.  相似文献   

17.
Re-entry space vehicle necessities sharp leading edges for better aerodynamic performance and, hence, require advanced thermal protection materials with improved safety for crew members. Material possessing high thermal conductivity and oxidation resistance are desirable at nose cap and wings leading edge of spacecraft. Consequently, the thermal shock resistance improves due to reduced thermal gradient and stresses. ZrB2 has drawn strong impetus for futuristic space vehicles as thermal protection materials under extreme thermal environments. This study reviews the effect of the incorporation of non-carbonaceous and carbon additives on the thermal conductivity of ZrB2 ceramics and based composites. Several factors such as the purity of starting powder, initial particle size, amount of sintering aids, processing route, porosity, the grain size of ZrB2 matrix, distribution of secondary phases in the matrix and sinter density of the final composite, controls the overall thermal conductivity of ZrB2 based composites.  相似文献   

18.
α-Si3N4 powder was prepared by combustion synthesis using different particle sizes and shapes of Si3N4 diluent. The effects of different diluents on combustion temperature, phase composition, and microstructure of the product were investigated. The role of diluents in combustion synthesis is discussed. When no ammonium salt was added, because of the higher reaction temperature, the phase transformation of the fine particle diluent with the best barrier effect was also enhanced, and the α content of the product was the lowest. When the ammonium salt is added, the liquid phase Si content decreases at high temperatures, the lower reaction temperature and the Si3N4 generated before Si melting make the barrier effect of the diluent fully play. Finally, Si3N4 powder with 86% α content was synthesized by combustion with 2 μm Si3N4 diluent.  相似文献   

19.
A two-step sintering process was conducted to produce β-Si3N4 ceramics with high thermal conductivity. During the first step, native SiO2 was eliminated, and Y2O3 was in situ generated by a metal hydride reduction process, resulting in a high Y2O3/SiO2 ratio. The substitution YH2 for Y2O3 endow Si3N4 ceramics with an increase of 29% in thermal conductivity from 95.3 to 123 W m−1 K−1 after sintered at 1900°C for 12 hours despite an inferior sinterability. This was primarily attributed to the purified enlarged grains, devitrified grain boundary phase, and reduced lattice oxygen content in the YH2-MgO-doped material.  相似文献   

20.
Polymer-derived greenish-yellow emitting silicon (oxy)nitride phosphors excited by blue light were prepared by using polycarbonsilane, europium (Eu) and calcium (Ca) acetylacetonates as raw materials. The chemical compositions, crystal phases, particle morphologies and microstructures of the samples prepared with Eu, and/or Ca, and none of any metal ions were studied and are compared. It was found that the Ca-containing Eu-activated silicon (oxy)nitride sample prepared with the atomic ratios of Eu/Si and Ca/Si being 0.06 and 0.12, respectively, was composed mainly of single crystallized particles in the β-Si3N4-like phase with Eu2+/3+ and Ca2+ ions locating at interstices of the β-Si3N4-like lattices. This sample demonstrated a substantial increment in the intensity of its broad and spike-less emission spectrum excited at 468 nm as compared to that for the Ca-free sample with its major emission peak being at 570 nm, and recorded a CIE coordinate (0.3386, 0.3474) near the equal energy white point with a Ra value of 71.4 when employed as the phosphor for a white light emitting diode device with blue chip of 460 nm. The emission mechanisms of Eu-activated for the Ca-free sample and the Ca-containing sample, the later res-shifted the major excitation band from the near-ultraviolet to blue, are discussed based on the experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号