首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Pseudobrookite-type Mg5Nb4O15 ceramics were prepared by aqueous sol–gel process and microwave dielectric properties were investigated. Highly reactive nanosized Mg5Nb4O15 powders were successfully synthesized at 600 °C in oxygen atmosphere with particle sizes of 20–40 nm firstly and then phase evolution was detected by DTA-TG and XRD. Sintering characteristics and microwave dielectric properties of Mg5Nb4O15 ceramics were studied at different temperatures ranging from 1200 °C to 1400 °C. With the increase of sintering temperature, density, ?r and Q·f values increased, and then saturated at 1300 °C. Excellent microwave properties of ?r ~11.3, Q·f ~43,300 GHz and τf ~?58 ppm/°C, were obtained finally. The sintering temperature of Mg5Nb4O15 ceramics was significantly reduced by aqueous sol–gel process compared to conventional solid-state methods.  相似文献   

3.
(CoxZn1–x)TiNb2O8 (x = 0.2–0.8) microwave dielectric ceramics were synthesized via the conventional solid-state reaction route, and the correlation of microwave dielectric properties on the crystal structure was discussed. Crystal structures of ceramic samples were systematically investigated by X-ray powder diffraction. Moreover, composition-induced phase transitions were confirmed via the following sequence: for x ≤ 0.2, single-phase orthorhombic ixiolite (ZnTiNb2O8) was formed, whereas for 0.3 ≤ x<0.8, ixiolite and rutile coexisted. When x ≥ 0.8, only single-phase rutile was detected. For the (CoxZn1–x)TiNb2O8 ceramics, the microwave dielectric properties were changed with the crystal structural transitions: the dielectric constant (εr) and the temperature coefficient of resonant frequency (τf) increased upon increasing the Co2+, but the quality factor (Q) decreased. A near-zero τf = +1.6 ppm/°C was obtained in the Co0.38Zn0.62TiNb2O8 ceramics with εr = 40.7 and high Q × f = 16 790 GHz. These research outcomes are expected to have great significance for developing microwave dielectric ceramics in practical applications.  相似文献   

4.
《Ceramics International》2017,43(18):16167-16173
In this work, a series of low-temperature-firing (1−x)Mg2SiO4xLi2TiO3–8 wt% LiF (x = 35–85 wt%) microwave dielectric ceramics was prepared through conventional solid state reaction. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses showed that the Li2TiO3 phase was transformed into cubic phase LiTiO2 phase and secondary phase Li2TiSiO5. Partial substitution of Mg2+ ions for Ti3+ ions or Li+Ti3+ ions increased the cell volume of the LiTiO2 phase. The dense microstructures were obtained in low Li2TiO3 content (x ≤ 65 wt%) samples sintered at 900 °C, whereas the small quantity of pores presented in high Li2TiO3 content (x ≥ 75 wt%) samples sintered at 900 °C and low Li2TiO3 content (x = 45 wt%) sintered at 850 and 950 °C. Samples at x = 45 wt% under sintering at 900 °C for 4 h showed excellent microwave dielectric properties of εr = 10.7, high Q × f = 237,400 GHz and near-zero τf = − 3.0 ppm/°C. The ceramic also exhibited excellent chemical compatibility with Ag. Thus, the fabricated material could be a possible candidate for low temperature co-fired ceramic (LTCC) applications.  相似文献   

5.
In this work, the Mg2-xCuxSiO4(x = 0–0.40) microwave dielectric ceramics were prepared using solid-state reaction method. Compared with the Mg2SiO4 sample, the Cu-substituted Mg samples could be sintered at a lower temperature. The Mg2?xCuxSiO4 ceramics exhibit the composite phases of Mg2SiO4 and a small quantity of MgSiO3. The Cu2+ ion presented a solid solution with the Mg2SiO4 phase and preferentially occupy Mg(1) site. The distortion of MgO6 octahedron was modified by Cu2+ ions, resulting in a positive change in the temperature coefficient of resonance frequency (τf) values. Excellent microwave dielectric properties of εr = 6.35, high Qf of  188,500 GHz and near zero τf = ?2.0 ppm/°C were achieved at x = 0.08 under sintering at 1250 °C for 4 h. Thus, the fabricated ceramics were considered as possible candidates for millimeter-wave device applications.  相似文献   

6.
Two melilite-structured ceramics, Ba2MgGe2O7 and Ba2ZnGe2O7, were fabricated using the simple solid-state sintering route and their microwave dielectric properties were reported for the first time. Rietveld refinements revealed that both ceramics crystallized in a tetragonal system with a space group P-421m. In contrast to Ba2MgGe2O7 that was single phase in the whole sintering range, Ba2ZnGe2O7 exhibited a second phase BaZnGeO4 which was confirmed by SEM and Raman analysis. The sintering temperature could optimize the relative density and dielectric properties. Dense Ba2MgGe2O7 and Ba2ZnGe2O7 ceramics could be obtained at 1280?°C and 1180?°C with low relative permittivity(εr) of 7.76 and 9.0, high quality factor (Q?×?f) of 20,700 and 13,950?GHz, and negative temperature coe?cient of resonant frequency (τf) of ?55 and ?75?ppm/°C, respectively. Their differences in microwave dielectric properties were analyzed based on ionic polarizability and packing fraction. The thermal stability of Ba2MgGe2O7 was tuned through the solid solution formation with TiO2 and the τf value was adjusted successfully.  相似文献   

7.
《应用陶瓷进展》2013,112(6):367-372
Abstract

Abstract

Uncommon low loss Mg1·5Zn0·5SiO4 ceramics containing Bi2O3 were investigated by focusing on the roles of Bi2O3 on phase evolution and resultant microwave dielectric properties. While the primary goal of lowering sintering temperature can be easily assumed, some unexpected behaviours of the Bi2O3 containing materials are highlighted with experimental evidences concerning selective dissolution of Zn2SiO4 and grain boundary segregation of gradual Bi richer phases. These evidences are strongly dependent on the content of Bi2O3 and sintering temperature. As an optimal composition, Mg1·5Zn0·5SiO4 with 0·5?mol.-%Bi2O3 exhibited promising dielectric properties of a k value ~6·8 and a Q×f value ~23?300 at a sintering temperature of 1150°C, which is much lower than typical sintering temperature of 1450°C.  相似文献   

8.
La2(Zr1−xTix)3(MoO4)9 (0 ≤ x ≤ 0.1) ceramics were prepared by the traditional solid-state reaction method. XRD analysis showed that La2(Zr1−xTix)3(MoO4)9 (0 ≤ x ≤ 0.1) ceramics belonged to a trigonal system. Based on the chemical bond theory, the consequences of bond energy, bond ionicity, lattice energy, and thermal expansion coefficient of ceramics on microwave dielectric properties were discussed. As Ti4+ addition was increased, the reduction in dielectric constant was ascribed to the fact that the polarizability of Ti4+ is smaller than Zr4+, and the downward trend was related to the bond ionicity. Besides, the tendency of Q·f value depended on the packing fraction and the lattice energy. The improvement in τf value, the increase in bond energy, and the decrease in the coefficient of thermal expansion were all correlated. The far-infrared spectra implied that the absorptions of structural phonon oscillation were the main reason for the maximum polarization contribution. La2(Zr0.92Ti0.08)3(MoO4)9 ceramics sintered at 750°C for 4 hours exhibited the best dielectric properties (εr = 10.33, Q·f = 80 658 GHz, and τf = 3.48 ppm/°C).  相似文献   

9.
The crystal structure and microwave dielectric properties of Zn0.9Ti0.8?xSnxNb2.2O8 (x = 0.00, 0.05, 0.10, 0.15) ceramics sintered at temperatures ranging from 1100 °C to 1140 °C for 6 h were investigated. A single phase with ixiolite structure was obtained. With the increase of Sn content, the dielectric constant decreased attributed to the decrease of dielectric polarizability. The Qf value decreased with the decrease of packing fraction and grain size. The temperature coefficient of resonant frequency (τf) increased due to the increase of the bond valence of Zn0.9Ti0.8?xSnxNb2.2O8 ceramics. The excellent microwave dielectric properties of ? = 35.05, Qf = 49,100 GHz, τf = ?27.6 × 10?6/°C were obtained for Zn0.9Ti0.8?xSnxNb2.2O8 (x = 0.05) specimens sintered at 1120 °C for 6 h.  相似文献   

10.
《Ceramics International》2023,49(13):21695-21707
0.96BaTiO3-0.04Bi(Mg1/2Ti1/2)O3 (0.96BT-0.04BMT) + y wt.% Nb2O5 ceramics (0.0 ≤ y ≤ 2.0) were sintered at 1275 °C to fabricate a ceramic with a large εr for an X8R multilayer ceramic capacitor (MLCC). Addition of Nb2O5 afforded a core–shell structure, and the compositions of the core and shell regions were similar to those of BT and BT-BMT, respectively. The sample (y = 1.25) exhibited a large εr of 2285 with a good temperature stability satisfying the X8R specification because of a broad shell-region phase-transition peak at −17 °C and a decreased εr of the core-region phase-transition peak. The 0.1 wt% BaO–CaO–SiO2 (BCS) was used to reduce the sintering temperature, and the 9-layered MLCC produced using a BCS-doped 0.96BT-0.04BMT + 1.25 wt% Nb2O5 ceramic at 1200 °C showed a large capacitance of 67 nF with a good temperature stability thus complying with EIA-X8R regulations.  相似文献   

11.
The MgO-MoO3 system shows significant potential for applications in microwave dielectric ceramics. However, the formation mechanism, crystal structures, and microwave dielectric properties of this system have not been systematically investigated. This work aims to comprehensively study the crystal structures, phase transitions, and microwave dielectric properties of compounds in the MgO-MoO3 system. In particular, the research delves into the unexplored transformation mechanism from β-MgMo2O7 to α-MgMo2O7 and MgMoO4. As a result, the three compounds exhibiting favorable microwave dielectric properties have been successfully fabricated. These compounds can be effectively sintered at temperatures ranging from 685 to 900°C and exhibited dielectric constants (εr) ranging from 5.41 to 6.89, as well as Qf values ranging from 100 000 to 130 000 GHz. Additionally, prototype microstrip antennas are designed and fabricated using β-MgMo2O7 and MgMoO4 ceramics as substrates. The obtained antenna's performance is excellent, with S11 values below −30 dB and a gain exceeding 6 dB at 5.8 GHz, highlighting the potential of the developed ceramics for practical applications in microwave devices.  相似文献   

12.
《Ceramics International》2022,48(14):20245-20250
There has been extensive research on microwave dielectric materials considering their application in 5G and 6G communication technologies. In this study, the sintering temperature range of Mg2TiO4–CeO2 (MT-C) ceramics was broadened using a composite of CeO2 and Mg2TiO4 ceramics, and their microwave dielectric performance was stabilized. Low-loss MT-C composite ceramics were prepared using the solid-phase reaction method, and their microwave dielectric properties, microscopic morphologies, and phase structures were investigated. The proposed MT-C ceramics contained Mg2TiO4 and CeO2 phases; their average grain size was maintained at 2–4 μm in the sintering temperature range of 1275–1425 °C, and the samples were uniformly dense without porosity. The cross-distribution of Mg2TiO4 and CeO2 grains in the samples inhibited the growth of ceramic grains, providing uniform and dense surfaces. The dielectric loss of MT-C ceramics remained constant in the temperature range of 1300–1425 °C at 9 × 10?4 (8.45 ≤ f ≤ 8.75 GHz). As opposed to the base material, MT-C ceramics are advantageous owing to their wide sintering temperature range and the stable microwave dielectric properties, and there are suitable substrate materials for further industrial applications.  相似文献   

13.
《Ceramics International》2023,49(1):202-209
The phase compositions and microwave dielectric properties of Sn-deficient Ca2Sn2Al2O9 ceramics in this study were explored. The CaSnO3 and SnO2 second phases existed at Ca2Sn2-xAl2O9-2x (x = 0) ceramic. Single-phase Ca2Sn2Al2O9 ceramics were obtained at 0.08 ≤ x ≤ 0.1, and the orthorhombic structure with the Pbcn space group of Ca2Sn2Al2O9 was verified. For multi-phase Ca2Sn2-xAl2O9-2x (0 ≤ x ≤ 0.06) ceramics, their microwave dielectric properties were mainly affected by second phase contents, and their Q × f values increased gradually with the rise in x. High Q × f (105,700 GHz at 12.99 GHz) was obtained by the Ca2Sn2-xAl2O9-2x (x = 0.08) ceramic with high intrinsic Q × f (175,000 GHz). The large deviation between measured Q × f values and fitted intrinsic Q × f values could be ascribed to the Sn4+ vacancies of the Sn-deficient Ca2Sn2Al2O9 ceramics. The Ca2Sn2-xAl2O9-2x (0 ≤ x ≤ 0.1) ceramics presented large negative τf values, and this τf was mainly affected by τε. Meanwhile, the Ca2Sn2-xAl2O9-2x (x = 0.08) ceramic achieved optimal microwave dielectric properties (εr = 8.3, Q × f = 105,700 GHz at 12.99 GHz and τf = ?63.7 ppm/°C), indicating the good feature of this material for millimetre-wave applications.  相似文献   

14.
A novel system Li3Mg2(Nb(1−x)Mox)O6+x/2 (0 ≤ x ≤ 0.08) microwave dielectric ceramics were fabricated by the solid-state method. The charge compensation of Mo6+ ions substitution for Nb5+ ions was performed by introducing oxygen ions. The X-ray diffraction patterns and Rietveld refinements indicated Li3Mg2(Nb(1−x)Mox)O6+x/2 ceramics with single phase and orthorhombic structure. Micro-structure and density confirmed that the grain of Li3Mg2(Nb(1-x)Mox)O6+x/2 ceramics grew well. In addition, the permittivity of Li3Mg2(Nb(1−x)Mox)O6+x/2 ceramics with the same trend as density decreased slightly with increasing Mo6+ ions content. However, the Q*f and τf were obviously improved with an appropriate amount of Mo6+ ions. When x ≤ 0.04, the Q*f was closely related to the bond valence of samples, while when x ≥ 0.06, the Q*f was closely related to the density of samples. The variations of τf and oxygen octahedral distortion were the opposite. In conclusions, the Li3Mg2(Nb0.98Mo0.02)O6.01 ceramic sintered at 1200°C for 6 hours exhibited outstanding properties: εr ~ 15.18, Q*f ~ 116 266 GHz, τf ~ −15.71 ppm/oC.  相似文献   

15.
The effects of Li2CO3–Bi2O3 (LB) additive on the microstructure, phase formation, microwave dielectric properties and applicability for low-temperature co-fired ceramics (LTCC) technology of (Ca0.9Mg0.1)SiO3 (CMS) ceramics were investigated. The sintering temperature of the CMS ceramics was reduced from 1290 °C to 890 °C by the addition of LB. Secondary phases SiO2 and Bi4(SiO4)3 were detected when LB content was less than 9 wt%. Low melting point liquid phases were formed when LB content was 11–14 wt%. The Qf value initially increased with the addition of LB and attained the maximum value for the 9 wt% LB-doped CMS ceramic. When the LB content exceeded 9 wt%, the Qf value decreased because of the presence of liquid phase and abnormal growth of grains. ?r of 6.92, Qf of 27,600 GHz and τf of ?43.6 ppm/°C were obtained for 9 wt% LB-doped CMS ceramics sintered at 890 °C for 2 h. Also the ceramics can be well co-fired with Ag electrode.  相似文献   

16.
Structure and microwave dielectric properties were studied in the (1−x)La(Mg1/2Ti1/2)O3–xLa2/3TiO3 system. Ceramics with this composition in the 0⩽x⩽0.5 range were processed from powders obtained by a citrate-based chemical route. Structure of these perovskite solid solutions changed from orthorhombic for x=0.1 and 0.3 to pseudocubic for x=0.5. Microwave and radio frequency measurements revealed increase in permittivity and temperature coefficient of the resonant frequency τf with increasing of La2/3TiO3 content. Close to zero τf value was found near to x=0.5 composition of (1−x)La(Mg1/2Ti1/2)O3x La2/3TiO3.  相似文献   

17.
《Ceramics International》2020,46(6):7050-7054
Phase evolution and microwave dielectric properties of SrTiO3 added ZnAl2O4–3Zn2SiO4–2SiO2 ceramics system were investigated. With the addition of SrTiO3, the sintering temperature for dense ceramic is reduced from 1320 °C to 1180–1200 °C. According to the nominal composition ZnAl2O4–3Zn2SiO4–2SiO2-ySrTiO3, phase evolution is revealed by XRD patterns and Back Scattering Electron images: Zn2SiO4, ZnAl2O4 and SiO2 phases coexist at y = 0; SrTiO3 reacts with ZnAl2O4 and SiO2 to form SrAl2Si2O8, TiO2 and Zn2SiO4 at y = 0.2 to 0.8, and SiO2 phase disappears at y = 0.8; new phase of Zn2TiO4 is obtained at y = 1. The existence of TiO2 has important effect on the dielectric properties. The optimized microwave dielectric properties are obtained at y = 0.6 and the ceramics show low dielectric constant (7.16), high-quality factor (57, 837 GHz), and low temperature coefficient of resonant frequency (−30 ppm °C−1).  相似文献   

18.
Ba0.5Sr0.5TiO3–Mg2(Ti0.95Sn0.05)O4 composite ceramics have been synthesized by the solid-state reaction. Phase structure, microstructure and microwave dielectric properties have been systematically characterized. The permittivity is tailored to a certain extent with the addition of Mg2(Ti0.95Sn0.05)O4. Both X-ray diffraction (XRD) and back electric image (BEI) analysis show the co-existence of two-phase structures of ABO3 perovskite and A2BO4 spinel structure. A high dielectric tunablity can be obtained and a high Q value can be achieved at microwave frequency. The composition 30 wt.%Ba0.5Sr0.5TiO3–70 wt.%Mg2(Ti0.95Sn0.05)O4 exhibits good dielectric properties with ? of 79, Q of 152 (at 2.997 GHz) and T of 15.8% (30 kV/cm & 10 kHz) at room temperature, which make it a promising candidate for tunable microwave device applications in the wireless communication system.  相似文献   

19.
BiNbO4 ceramics were developed by using CuO–V2O5 as a liquid phase sintering agent. The resultant dielectric properties were analyzed in terms of the densification and the amount of CuO–V2O5 sintering agent. The addition of 0.8 wt.% CuO–V2O5 as its sintering agent was observed to perform most satisfactory. At 850 °C, uniform and enhanced microstructure was observed for the BiNbO4 specimen with 0.8 wt.% CuO–V2O5 addition. Furthermore, the effect of CuO–V2O5 addition on the microwave dielectric properties of BiNbO4 was also investigated. As the sintering temperature increased to 900 °C, the dielectric constant increased but nearly constant and the quality factor (QF) showed a maximum at 850 °C and then decreased for all compositions of the 900 °C sintered specimens. With an increase in CuO–V2O5 content, the temperature coefficient of frequency (TCF) increased in accordance with the dielectric mixing rule and microstructural behavior.  相似文献   

20.
Dielectric ceramics were synthesized and characterized in the BaO–La2O3–TiO2–Ta2O5 quaternary system for the three typical compositions: Ba3La3Ti5Ta5O30, Ba4La2Ti4Ta6O30 and Ba5LaTi3Ta7O30, which formed the filled tungsten-bronze structures. The present ceramics indicated high dielectric constant ε (127.7–148.1) and low dielectric loss tanδ (in the order of 10−4–10−3 at 1 MHz). Meanwhile, the temperature coefficient of dielectric constant τε varied from −728 to −1347 ppm/°C with increasing Ba and Ta and decreasing La and Ti concentration in the temperature range of 20–85 °C. The present ceramics are promising candidates for high-ε and low loss dielectric ceramics, and the suppression of τε should be the primary issue in the future work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号