首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
A wireless ad hoc network consists of mobile nodes that are powered by batteries. The limited battery lifetime imposes a severe constraint on the network performance, energy conservation in such a network thus is of paramount importance, and energy efficient operations are critical to prolong the lifetime of the network. All-to-all multicasting is one fundamental operation in wireless ad hoc networks, in this paper we focus on the design of energy efficient routing algorithms for this operation. Specifically, we consider the following minimum-energy all-to-all multicasting problem. Given an all-to-all multicast session consisting of a set of terminal nodes in a wireless ad hoc network, where the transmission power of each node is either fixed or adjustable, assume that each terminal node has a message to share with each other, the problem is to build a shared multicast tree spanning all terminal nodes such that the total energy consumption of realizing the all-to-all multicast session by the tree is minimized. We first show that this problem is NP-Complete. We then devise approximation algorithms with guaranteed approximation ratios. We also provide a distributed implementation of the proposed algorithm. We finally conduct experiments by simulations to evaluate the performance of the proposed algorithm. The experimental results demonstrate that the proposed algorithm significantly outperforms all the other known algorithms.  相似文献   

2.
In this paper, we present new algorithms for online multicast routing in ad hoc networks where nodes are energy-constrained. The objective is to maximize the total amount of multicast message data routed successfully over the network without any knowledge of future multicast request arrivals and generation rates. Specifically, we first propose an online algorithm for the problem based on an exponential function of energy utilization at each node. The competitive ratio of the proposed algorithm is analyzed if admission control of multicast requests is permitted. We then provide another online algorithm for the problem, which is based on minimizing transmission energy consumption for each multicast request and guaranteeing that the local network lifetime is no less than gamma times of the optimum, where gamma is constant with 0 < gammaleq 1. We finally conduct extensive experiments by simulations to analyze the performance of the proposed algorithms, in terms of network capacity, network lifetime, and transmission energy consumption for each multicast request. The experimental results clearly indicate that, for online multicast routing in ad hoc wireless networks, the network capacity is proportional to the network lifetime if the transmission energy consumption for each multicast request is at the same time minimized. This is in contrast to the implication by Kar et al. that the network lifetime is proportional to the network capacity when they considered the online unicast routing by devising an algorithm based on the exponential function of energy utilization at each node.  相似文献   

3.
This paper presents an energy-efficient cooperative MAC (EECO-MAC) protocol using power control in mobile ad hoc networks. Cooperative communications improve network performance by taking full advantage of the broadcast nature of wireless channels. The power control technique improves the network lifetime by adjusting the transmission power dynamically. We propose the best partnership selection algorithm, which takes energy consumption into consideration for selection of the optimal cooperative helper to join in the transmission. Through exchanging control packets, the optimal transmission power is allocated for senders to transmit data packets to receivers. In order to enhance energy saving, space–time backoff and time–space backoff algorithms are proposed. Simulation results show that EECO-MAC consumes less energy and prolongs the network lifetime compared to IEEE 802.11 DCF and CoopMAC at the cost of delay. Performance improvement offered by our proposed protocol is apparent in congested networks where nodes have low and limited energy.  相似文献   

4.
In this work we study the combination of multi-cost routing and adjustable transmission power in wireless ad hoc networks, so as to obtain dynamic energy- and interference-efficient routes to optimize network performance. In multi-cost routing, a vector of cost parameters is assigned to each network link, from which the cost vectors of candidate paths are calculated. Only at the end these parameters are combined in various optimization functions, corresponding to different routing algorithms, for selecting the optimal path. The multi-cost routing problem is a generalization of the multi-constrained problem, where no constraints exist, and is also significantly more powerful than single-cost routing. Since energy is an important limitation of wireless communications, the cost parameters considered are the number of hops, the interference caused, the residual energy and the transmission power of the nodes on the path; other parameters could also be included, as desired. We assume that nodes can use power control to adjust their transmission power to the desired level. The experiments conducted show that the combination of multi-cost routing and adjustable transmission power can lead to reduced interference and energy consumption, improving network performance and lifetime.  相似文献   

5.
Gil  Adrian   《Ad hoc Networks》2003,1(4):405-421
The terrorist attacks on September 11, 2001 have drawn attention to the use of wireless technology in order to locate survivors of structural collapse. We propose to construct an ad hoc network of wireless smart badges in order to acquire information from trapped survivors. We investigate the energy efficient routing problem that arises in such a network and show that since smart badges have very limited power sources and very low data rates, which may be inadequate in an emergency situation, the solution of the routing problem requires new protocols. The problem is formulated as an anycast routing problem in which the objective is to maximize the time until the first battery drains-out. We present iterative algorithms for obtaining the optimal solution of the problem. Then, we derive an upper bound on the network lifetime for specific topologies and describe a polynomial algorithm for obtaining the optimal solution in such topologies. Finally, numerical results regarding the upper bound and the algorithms are presented.  相似文献   

6.
In wireless sensor networks, scheduling the sleep duration of each node is one of the key elements for controlling critical performance metrics such as energy consumption and latency. Since the wakeup interval is a primary parameter for determining the sleeping schedule, how to tune the wakeup interval is crucial for the overall network performance. In this paper, we present an effective framework for tuning asynchronous wakeup intervals of IEEE 802.15.4 sensor networks from the energy consumption viewpoint. First, we derive an energy consumption model of each node as an explicit function of the wakeup interval, and empirically validate the derived model. Second, based on the proposed model, we formulate the problem of tuning the wakeup interval with the following two objectives: to minimize total energy consumption and to maximize network lifetime. We show that these two problems can be optimally solved by an iterative algorithm with global information by virtue of the convexity of the problem structure. Finally, as practical solutions, we further propose heuristic optimization algorithms that only exploit local information. In order to develop heuristic algorithms, we propose two broadcasting schemes, which are entitled as maximum wakeup interval broadcasting and efficient local maximum broadcasting. These broadcasting algorithms enable nodes in the network to have heterogeneous wakeup intervals.  相似文献   

7.
In this paper, we consider the reliable broadcast and multicast lifetime maximization problems in energy‐constrained wireless ad hoc networks, such as wireless sensor networks for environment monitoring and wireless ad hoc networks consisting of laptops or PDAs with limited battery capacities. In packet loss‐free networks, the optimal solution of lifetime maximization problem can be easily obtained by tree‐based algorithms. In unreliable networks, we formulate them as min–max tree problems and prove them NP‐complete by a reduction from a well‐known minimum degree spanning tree problem. A link quality‐aware heuristic algorithm called Maximum Lifetime Reliable Broadcast Tree (MLRBT) is proposed to build a broadcast tree that maximizes the network lifetime. The reliable multicast lifetime maximization problem can be solved as well by pruning the broadcast tree produced by the MLRBT algorithm. The time complexity analysis of both algorithms is also provided. Simulation results show that the proposed algorithms can significantly increase the network lifetime compared with the traditional algorithms under various distributions of error probability on lossy wireless links. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
In order to resolve the traditional limited lifetime problem, energy harvesting technology has been introduced into wireless sensor network (WSN) in recent years, engendering a new kind of network which is called energy harvesting wireless sensor network (EHWSN). In EHWSNs, besides the traditional issues, such as energy consumption, energy equilibrium, transmission efficiency, etc., there are still new challenges, such as how to utilize harvested energy efficiently and how to make more sensor nodes so as to achieve unlimited lifetime under actual situation. In this paper, inspired by slime mold Physarum polycephalum, a novel bionic routing protocol, abbreviated as EHPRP, is proposed for EHWSNs to address above problems without predicting harvestable energy value. Three distributed routing algorithms with low algorithm complexity are proposed which would prominently reduce the processing delay and conserve energy. Furthermore, the mathematic theoretical analysis is made to prove the stability of EHPRP routing strategy. Finally, simulation results present that, compared with other typical algorithms, EHPRP consumes less energy, always making the whole network obtain an unlimited lifetime, and displaying more uniform network energy distribution under different workload conditions.  相似文献   

9.
Energy consumption is one of the most important design constraints when building a wireless sensor and actuator network since each device in the network has a limited battery capacity, and prolonging the lifetime of the network depends on saving energy. Overcoming this challenge requires a smart and reconfigurable network energy management strategy. The Software‐Defined Networking (SDN) paradigm aims at building a flexible and dynamic network structure, especially in wireless sensor networks. In this study, we propose an SDN‐enabled wireless sensor and actuator network architecture that has a new routing discovery mechanism. To build a flexible and energy‐efficient network structure, a new routing decision approach that uses a fuzzy‐based Dijkstra's algorithm is developed in the study. The proposed architecture can change the existing path during data transmission, which is the key property of our model and is achieved through the adoption of the SDN approach. All the components and algorithms of the proposed system are modeled and simulated using the Riverbed Modeler software for more realistic performance evaluation. The results indicate that the proposed SDN‐enabled structure with fuzzy‐based Dijkstra's algorithm outperforms the one using the regular Dijkstra's and the ZigBee‐based counterpart, in terms of the energy consumption ratio, and the proposed architecture can provide an effective cluster routing while prolonging the network lifetime.  相似文献   

10.
Wireless energy transfer as a promising technology provides an alternative solution to prolong the lifetime of wireless rechargeable sensor networks (WRSNs). In this paper, we study replenishing energy on sensors in a WRSN to shorten energy expiration durations of sensors, by employing a mobile wireless charger to replenish sensors dynamically. We first formulate a novel sensor recharging problem with an objective of maximizing the charging utility of sensors, subject to the total traveling distance of the mobile charger per tour and the charging time window of each to-be-charged sensor. Due to the NP-hardness of the problem, we then propose an approximation algorithm with quasi-polynomial time complexity. In spite of the guaranteed performance ratio of the approximate solution, its time complexity is prohibitively high and may not be feasible in practice. Instead, we devise a fast yet scalable heuristic for the problem in response to dynamic energy consumption of sensors in the network. Furthermore, we also consider the online version of the problem where sensor replenishment is scheduled at every fixed time interval. We finally conduct extensive experiments by simulation to evaluate the performance of the proposed algorithms. Experimental results demonstrate that the proposed algorithms are very promising.  相似文献   

11.
Since there is no fixed infrastructure or centralized management in wireless ad hoc networks, a Connected Dominating Set (CDS) has been proposed to serve as a virtual backbone. The CDS of a graph representing a network has a significant impact on the efficient design of routing protocols in wireless networks. This problem has been studied extensively in Unit Disk Graphs (UDG), in which all nodes have the same transmission ranges. However, in practice, the transmission ranges of all nodes are not necessarily equal. In this paper, we model a network as a disk graph and introduce the CDS problem in disk graphs. We present two efficient approximation algorithms to obtain a minimum CDS. The performance ratio of these algorithms is constant if the ratio of the maximum transmission range over the minimum transmission range in the network is bounded. These algorithms can be implemented as distributed algorithms. Furthermore, we show a size relationship between a maximal independent set and a CDS as well as a bound of the maximum number of independent neighbors of a node in disk graphs. The theoretical analysis and simulation results are also presented to verify our approaches.  相似文献   

12.
Wireless sensor networks are composed of energy constrained nodes embedding limited transmission, processing and sensing capabilities. The main research efforts in this area sought to prolong the network lifetime by reducing energy consumption of network operations. Data gathering mechanisms such as clustering have been shown to achieve significant energy savings. However, such benefits can be obtained only if neighboring clusters operate on different frequencies (channels). As the salient characteristics of wireless sensor networks favor a distributed approach, we analyze the performance of several distributed frequency assignment algorithms with a focus on energy consumption. In this context, we find that a heuristic may achieve better results than backtracking-based algorithms.  相似文献   

13.
In this paper, we address the problem of energy efficiency in wireless ad hoc networks. We consider an ad hoc network comprising a set of sources, communicating with their destinations using multiple routes. Each source is associated with a utility function which increases with the total traffic flowing over the available source-destination routes. The network lifetime is defined as the time until the first node in the network runs out of energy. We formulate the problem as one of maximizing the sum of the source utilities subject to a required constraint on the network lifetime. We present a primal formulation of the problem, which uses penalty functions to take into account the system constraints, and we introduce a new methodology for solving the problem. The proposed approach leads to a flow control algorithm, which provides the optimal source rates and can be easily implemented in a distributed manner. When compared with the minimum transmission energy routing scheme, the proposed algorithm gives significantly higher source rates for the same network lifetime guarantee.  相似文献   

14.
Maximum lifetime routing in wireless sensor networks   总被引:11,自引:0,他引:11  
A routing problem in static wireless ad hoc networks is considered as it arises in a rapidly deployed, sensor based, monitoring system known as the wireless sensor network. Information obtained by the monitoring nodes needs to be routed to a set of designated gateway nodes. In these networks, every node is capable of sensing, data processing, and communication, and operates on its limited amount of battery energy consumed mostly in transmission and reception at its radio transceiver. If we assume that the transmitter power level can be adjusted to use the minimum energy required to reach the intended next hop receiver then the energy consumption rate per unit information transmission depends on the choice of the next hop node, i.e., the routing decision. We formulate the routing problem as a linear programming problem, where the objective is to maximize the network lifetime, which is equivalent to the time until the network partition due to battery outage. Two different models are considered for the information-generation processes. One assumes constant rates and the other assumes an arbitrary process. A shortest cost path routing algorithm is proposed which uses link costs that reflect both the communication energy consumption rates and the residual energy levels at the two end nodes. The algorithm is amenable to distributed implementation. Simulation results with both information-generation process models show that the proposed algorithm can achieve network lifetime that is very close to the optimal network lifetime obtained by solving the linear programming problem.  相似文献   

15.
Mobile sink (MS) has drawn significant attention for solving hot spot problem (also known as energy hole problem) that results from multihop data collection using static sink in wireless sensor networks (WSNs). MS is regarded as a potential solution towards this problem as it significantly reduces energy consumption of the sensor nodes and thus enhances network lifetime. In this paper, we first propose an algorithm for designing efficient trajectory for MS, based on rendezvous points (RPs). We next propose another algorithm for the same problem which considers delay bound path formation of the MS. Both the algorithms use k-means clustering and a weight function by considering several network parameters for efficient selection of the RPs by ensuring the coverage of the entire network. We also propose an MS scheduling technique for effective data gathering. The effectiveness of the proposed algorithms is demonstrated through rigorous simulations and comparisons with some of the existing algorithms over several performance metrics.  相似文献   

16.
Energy consumption has been the focus of many studies on Wireless Sensor Networks (WSN). It is well recognized that energy is a strictly limited resource in WSNs. This limitation constrains the operation of the sensor nodes and somehow compromises the long term network performance as well as network activities. Indeed, the purpose of all application scenarios is to have sensor nodes deployed, unattended, for several months or years.This paper presents the lifetime maximization problem in “many-to-one” and “mostly-off” wireless sensor networks. In such network pattern, all sensor nodes generate and send packets to a single sink via multi-hop transmissions. We noticed, in our previous experimental studies, that since the entire sensor data has to be forwarded to a base station via multi-hop routing, the traffic pattern is highly non-uniform, putting a high burden on the sensor nodes close to the base station.In this paper, we propose some strategies that balance the energy consumption of these nodes and ensure maximum network lifetime by balancing the traffic load as equally as possible. First, we formalize the network lifetime maximization problem then we derive an optimal load balancing solution. Subsequently, we propose a heuristic to approximate the optimal solution and we compare both optimal and heuristic solutions with most common strategies such as shortest-path and equiproportional routing. We conclude that through the results of this work, combining load balancing with transmission power control outperforms the traditional routing schemes in terms of network lifetime maximization.  相似文献   

17.
We consider information retrieval in a wireless sensor network deployed to monitor a spatially correlated random field. We address optimal sensor scheduling and information routing under the performance measure of network lifetime. Both single-hop and multi-hop transmissions from sensors to an access point are considered. For both cases, we formulate the problems as integer programming based on the theories of coverage and connectivity in sensor networks. We derive upper bounds for the network lifetime that provide performance benchmarks for suboptimal solutions. Suboptimal sensor scheduling and data routing algorithms are proposed to approach the lifetime upper bounds with reduced complexity. In the proposed algorithms, we consider the impact of both the network geometry and the energy consumption in communications and relaying on the network lifetime. Simulation examples are used to demonstrate the performance of the proposed algorithms as compared to the lifetime upper bounds.  相似文献   

18.
Recently, directional sensor networks that are composed of a large number of directional sensors have attracted a great deal of attention. The main issues associated with the directional sensors are limited battery power and restricted sensing angle. Therefore, monitoring all the targets in a given area and, at the same time, maximizing the network lifetime has remained a challenge. As sensors are often densely deployed, a promising approach to conserve the energy of directional sensors is developing efficient scheduling algorithms. These algorithms partition the sensor directions into multiple cover sets each of which is able to monitor all the targets. The problem of constructing the maximum number of cover sets has been modeled as the multiple directional cover sets (MDCS), which has been proved to be an NP-complete problem. In this study, we design two new scheduling algorithms, a greedy-based algorithm and a learning automata (LA)-based algorithm, in order to solve the MDCS problem. In order to evaluate the performance of the proposed algorithms, several experiments were conducted. The obtained results demonstrated the efficiency of both algorithms in terms of extending the network lifetime. Simulation results also revealed that the LA-based algorithm was more successful compared to the greedy-based one in terms of prolonging network lifetime.  相似文献   

19.
In this paper we address the problem of multicasting in ad hoc wireless networks from the viewpoint of energy efficiency. We discuss the impact of the wireless medium on the multicasting problem and the fundamental trade-offs that arise. We propose and evaluate several algorithms for defining multicast trees for session (or connection-oriented) traffic when transceiver resources are limited. The algorithms select the relay nodes and the corresponding transmission power levels, and achieve different degrees of scalability and performance. We demonstrate that the incorporation of energy considerations into multicast algorithms can, indeed, result in improved energy efficiency.  相似文献   

20.
无线传感器网络中的分簇算法   总被引:4,自引:0,他引:4  
分簇算法是无线传感器网络中实施分层路由所采用的重要方法,尤其是传感器节点受到能量和带宽的严重制约。如何合理、有效地利用分簇算法使得网络中节点的能量分布趋于一致,从而延长网络的生命周期,提高系统的整体性能指标,成为当前无线传感器网络研究领域内的热点问题之一。本文从能量有效性的角度出发,对最新的分簇算法进行研究与分析,指出如何根据无线传感器网络不同的分布区域、应用场景和多样的无线环境,生成性能优越的分簇算法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号