首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
选用浅交弯联、浅交直联、层联结构的M40碳纤维机织物为增强体材料,采用真空气压浸渗法制备纤维体积分数为48%,基体合金为ZL301的2.5D编织M40碳纤维增强铝基复合材料(2.5D-Cf/Al),研究织物结构对2.5D-Cf/Al复合材料微观组织与力学性能的影响。结果表明:复合材料的致密度随着织物结构的改变而变化,其中浅交直联结构的2.5D-Cf/Al复合材料的致密度最大为98.5%;织物结构对复合材料的经向拉伸强度有较大影响,浅交直联结构的2.5D-Cf/Al复合材料经向拉伸强度最高,为414.85 MPa,其拉伸断口参差不齐,呈现出适中的界面结合强度;织物结构对复合材料纬向拉伸强度的影响较小,拉伸断口形貌差异不明显。  相似文献   

2.
选用M40J碳纤维的2.5D浅交弯联编织预制体为增强体材料,ZL301合金为基体材料,制备纤维体积分数为48%的2.5D碳纤维增强铝基复合材料,2.5D浅交弯联编织预制体的经/纬向纤维比选取54%∶46%、65%∶35%和78%∶22%,研究了不同经/纬向纤维比的2.5D浅交弯联结构C_f/Al复合材料的致密度、微观组织和经纬向力学性能。结果表明,2.5D复合材料的致密度随着经向纤维体积分数的提高而不断下降,经/纬向纤维比为54%∶46%的2.5D-C_f/Al复合材料致密度最大,达到98.5%,组织中无明显浸渗缺陷,浸渗效果较好;经/纬向纤维比对2.5D-C_f/Al复合材料经/纬向抗拉强度影响较大,经/纬向纤维比为65%∶35%的2.5D-C_f/Al复合材料经向、纬向抗拉强度分别为380.6、245.6MPa,具有最佳的综合力学性能,其拉伸断口参差不齐,界面结合强度适中。  相似文献   

3.
选用ZL301合金为基体材料,采用2.5D浅交直联、三维正交和三维五向等3种结构编织了M40J碳纤维预制体,采用真空压力浸渗法制备纤维体积分数为50%的3D-C_f/Al复合材料。主要研究了织物结构对C_f/Al复合材料微观组织与压缩强度的影响。结果表明,织物结构对C_f/Al复合材料的致密度、微观组织和压缩性能影响较大。其中三维正交结构的C_f/Al复合材料的致密度和压缩强度最大,分别为99.2%和417MPa;而2.5D浅交直联结构的C_f/Al复合材料的致密度和压缩强度最小,分别为95.3%和99.8MPa。  相似文献   

4.
研究了Si Cf/TC17复合材料的室温、高温(773 K)拉伸性能及其断裂机制.结果表明:Si Cf/TC17复合材料室温、高温应力-应变曲线受纤维线弹性变形和基体屈服程度影响呈现不同的形状;室温断裂机制主要是反应层多次断裂、纤维一次断裂和基体脆性断裂等,高温断裂机制主要是纤维多次断裂、基体韧性断裂和大范围的界面脱黏等;纤维累计损伤理论适合于对Si Cf/TC17复合材料断裂强度的估测,其中室温断裂强度符合临界断裂纤维数大于或等于3时的局部承担载荷模型,高温断裂强度符合均匀承担载荷模型.结合断裂机制和强度估算结果,详细论述了Si Cf/TC17复合材料室温、高温拉伸断裂过程.  相似文献   

5.
以石墨纤维三维五向织物为增强体,铝合金ZL301为基体材料,采用真空辅助压力浸渗法制备了三维五向增强Cf/Al复合材料,研究了不同温度制备的复合材料微观组织特征和界面反应程度,测试了复合材料在室温和高温下的拉伸力学性能并分析了其断口形貌。结果表明:复合材料相对致密度随制备温度提高而增加,纤维局部偏聚现象也明显减少,与此同时,界面反应物Al4C3相随制备温度提高而显著增多,530℃到570℃复合材料室温拉伸极限强度随组织缺陷减少而增加,570℃到600℃复合材料室温极限拉伸强度随界面反应程度增大而显著降低;高温拉伸极限强度随制备温度提高而增加,适当提高界面反应程度有利于提高复合材料高温力学性能,高温拉伸中基体合金回复软化和界面结合强度弱化促进了复合材料断裂过程中的纤维拔出与界面滑移。  相似文献   

6.
以石墨纤维2.5D织物为增强体,ZL301铝合金为基体,采用真空气压浸渗法制备了碳纤维体积分数为42%的2.5D-C_f/ZL301复合材料,研究了纤维预热温度对复合材料致密度和力学性能的影响。结果表明,随着纤维预热温度的升高,2.5D-C_f/Al复合材料的致密度呈现先增加后减少的趋势;而复合材料室温抗拉强度随纤维预热温度提高而持续下降,这是因界面反应加剧而导致的界面结合过强而导致的复合材料力学性能恶化。  相似文献   

7.
以M40J碳纤维编织叠层穿刺结构预制体,选用ZL301为基体合金,采用真空压力浸渗法制备4种不同编织参数的叠层穿刺C_f/Al复合材料,研究了穿刺结构参数(Z向纱线规格和穿刺针距)对C_f/Al复合材料微观组织及拉伸性能的影响,并分析了其断裂变形行为及拉伸断口处形貌特征。结果表明,穿刺结构参数对C_f/Al复合材料微观组织及性能影响显著,单股、3 mm/针的C_f/Al复合材料的平均抗拉强度为623 MPa,单股、4 mm/针的C_f/Al复合材料的为353.3 MPa,为4种结构中最低,双股、3 mm/针的C_f/Al复合材料为650.2 MPa,为4种结构中最高,约为单股、4 mm/针复合材料的两倍;双股、4 mm/针的C_f/Al复合材料的为473 MPa。穿刺针距为3 mm/针的C_f/Al复合材料微观浸渗缺陷较少,抗拉强度较高,单股穿刺纱在经向拉伸时易出现Z向纱分层失效现象。叠层穿刺C_f/Al复合材料根据变形断裂行为,可将其拉伸破坏过程分为3个阶段:纤维与基体共同承载阶段、主要由纤维承受载荷阶段、断裂失效阶段。  相似文献   

8.
以石墨纤维三维五向织物为增强体,铝合金ZL301为基体,采用真空辅助压力浸渗法制备了三维五向增强Cf/Al复合材料,研究了不同预热温度制备的复合材料微观组织特征和界面反应程度,测试了复合材料在室温和高温下的拉伸力学性能并分析了其断口形貌。结果表明:复合材料相对致密度随预热温度提高而增加,纤维局部偏聚现象也明显减少,与此同时,界面反应物Al_4C_3相随预热温度提高而显著增多,530~570℃复合材料室温强度随组织缺陷减少而增大,570~600℃复合材料室温强度随界面反应程度增大而显著降低;高温(300℃)强度随预热温度提高而增加,适当提高界面反应程度有利于提高复合材料高温力学性能,高温拉伸中基体合金回复软化和界面结合强度弱化促进了复合材料断裂过程中的纤维拔出与界面滑移。  相似文献   

9.
采用真空压力浸渗法制备了Cf体积分数为50%的三维正交Cf/Al复合材料,主要研究了复合材料的显微组织以及室温、高温下的弯曲性能,并分析了复合材料弯曲失效机理。结果表明,三维正交Cf/Al复合材料经向显微组织的微孔缺陷较纬向显微组织要略多,复合材料在室温、350℃和400℃时,弯曲强度分别为498.8、363.0、303.0 MPa,弯曲模量分别为70.8、63.7、65.6GPa。其中,弯曲失效主要由于内侧面受压应力导致经向纤维束屈曲变形,纬向纤维束形态较完好;外侧面受拉应力导致复合材料拉伸破坏,存在纤维拔出现象。  相似文献   

10.
利用原位反应自发渗透技术合成了47.5%碳化钛TiC(体积分数,下同)增强AZ91D镁基复合材料,对比研究了该复合材料与铸态镁合金AZ91D基体的室温与高温拉伸变形行为,观察了拉伸断口微观组织形貌,并分析了这两种材料的断裂特征。结果表明,TiC/Mg复合材料具有良好的高温力学性能,在拉伸变形速率为0.001s^-1以及温度为723K,时其拉伸强度可达91.1MPa,而此时相同变形条件下的铸态AZ91D镁合金拉伸断裂强度只有41.1MPa,增幅达120%。而在室温下,镁基复合材料的拉伸断裂强度仅高出基体铸态镁合金23.4%。镁基复合材料的断裂应变较低,高低温时均表现为脆性断裂;而镁合金则由室温下的脆性断裂向高温下的韧性断裂过渡。  相似文献   

11.
以石墨纤维2.5维机织物为增强体,铝合金ZL301为基体材料,采用真空辅助压力浸渗法制备了2.5维织物Cf/Al复合材料,研究了3种织物预热温度下制备的复合材料相对致密度和微观组织形貌,分析了其界面产物组成与界面结构特征,测试了其经、纬向准静态拉伸变形力学行为并分析了其断口形貌。结果表明:复合材料织物的细观结构完整,内部纤维分布均匀,致密度随预热温度提高而略有上升,界面棒状产物为Al4C3相,其相对含量随预热温度的提高而增加,从而引起复合材料经向和纬向力学性能的下降。复合材料经向拉伸强度高于纬向拉伸强度,且其应力-应变行为呈现出显著的非线性特征,复合材料经向和纬向拉伸变形过程均可划分为3个阶段:初始弹性变形阶段、中间弹塑性变形阶段和最终损伤与断裂阶段。  相似文献   

12.
采用真空辅助压力浸渗法短切碳纤维增强镁基复合材料(Csf/AZ91D),在变形温度为400~490℃、应变速率为0.001~0.1s-1、最大变形量为50%的条件下,研究了Csf/AZ91D复合材料的高温压缩塑性变形行为,观察了复合材料变形前后的微观组织,通过与基体镁合金对比探讨了镁基复合材料高温塑性变形机理。结果表明,复合材料在高温压缩过程中碳纤维发生了显著的偏转和折断,致使复合材料的应变软化现象较镁合金更为明显;短碳纤维细化了基体组织并增加了界面数量,使得复合材料表现出较高的应变速率敏感性;短碳纤维和晶界对基体强化作用随变形温度升高而减弱,而复合材料应力水平随变形温度增加而显著降低,表现出比镁合金更高的表观变形激活能。  相似文献   

13.
利用Ti与La B6之间的化学反应经普通的熔铸工艺原位合成了Ti B和La2O3增强的钛基复合材料,而后复合材料浇铸成20 mm的棒材。研究了α+β和β热处理对复合材料的组织和拉伸性能的影响,利用光学显微镜和扫描电镜研究热处理后材料的微观组织和拉伸试样断面上增强体的增强机制。结果表明,α+β热处理后复合材料为α+β片层与少量近等轴α的混合组织,β热处理后复合材料为网篮组织。β热处理后复合材料的室温抗拉强度为1190 MPa,比α+β热处理的提高了31 MPa;β热处理后复合材料在600℃的抗拉强度为793 MPa,比α+β热处理的提高了48 MPa。复合材料在室温和600℃的断裂机制为Ti B纤维的承载断裂,在650℃和700℃的断裂机制为Ti B纤维的承载断裂和少量脱粘。  相似文献   

14.
采用真空吸渗挤压工艺制备了二维碳纤维增强铝基(2D-Cf/Al)复合材料。在挤压力(比压)为60~90 MPa、真空度为10~30 k Pa、浸渗挤压温度为580~620℃、保压时间为60~120 s时,可以获得浸渗充分和成形质量良好的复合材料。微观组织观察分析表明,基体合金和碳纤维分布均匀,纤维无折断、漂移现象,无明显微观缺陷。对Cf/Al复合材料进行密度和拉伸性能测试,其密度比基体合金降低17.9%,抗拉强度提高100%。热处理实验表明,经过T6热处理,基体合金的组织得到改善,内部应力和缺陷得到有效控制和消除,抗拉强度提高41%,而碳纤维和基体合金热膨胀系数的差异会在复合材料内部产生不良应力,导致其拉伸性能没有提高反而下降16%。  相似文献   

15.
用挤压铸造工艺制备了莫来石(mullite)短纤维增强马勒124合金(M124F)铝合金基复合材料.研究了其从常规室温到400℃高温的拉伸性能,以及热膨胀性能和硬度;体积分数为17%的莫来石(mullite)短纤维增的复合材料,在300℃高温强度比其他增强相复合材料提高15%以上.通过对拉伸断口的SEM观察,分析了复合材料的失效机制,裂纹源主要生成于增强纤维与基体的复合界面上.  相似文献   

16.
用挤压铸造工艺制备了莫来石短纤维(Mullitef)增强马勒124合金(M124F)铝基复合材料,研究了该复合材料从室温到400 ℃高温的拉伸性能及热膨胀性能.试验结果表明,体积分数为17%的Mullitef增强复合材料的300 ℃高温极限抗拉强度为228 MPa,比其他短纤维或晶须增强相铝基复合材料提高15%以上;热膨胀系数(CTF)为16.5×10-6 K.通过对3种试样的拉伸行为及SEM断口观察,分析了复合材料的静载破断机制,表明裂纹源主要生成于增强纤维与基体的复合界面上.  相似文献   

17.
利用扫描电镜观察了含30 % TiC 颗粒( 体积分数) 的钨基复合材料在室温和高温的微观断裂过程, 讨论了裂纹萌生、扩展条件及其影响因素。室温下的断裂过程受控于裂纹萌生阶段, 相应的应力- 挠度曲线表现为线性, TiC 颗粒和W 基体在微观上都呈现脆性断裂。高温下的断裂则存在一个亚稳态的初始裂纹长大和合并过程, 使应力- 挠度曲线呈现出非线性, 在微观上TiC 颗粒呈现脆性断裂,W 基体呈现韧性撕裂。同时也指出了复合材料在室温和高温下的强化机制  相似文献   

18.
由于复合材料断裂特征的复杂性,尚未给出所受载荷与断裂特征之间的关系,通常认为失效模式与层板的基体、纤维类型及试验温度有关。本研究通过拉伸试验、断口观察等方法研究了碳纤维与玻璃纤维增强树脂基复合材料单向板在-55、23及70℃的0°拉伸失效行为,分析了单向板0°拉伸的断裂特征、失效模式及其影响因素。结果表明:复合材料单向板的0°拉伸主要有2种失效模式,纤维基体断裂和界面失效;由于2种失效模式所占的比例不同,形成多种断口形态;失效模式、断裂特征与复合材料的拉伸强度关系不大,主要与界面的结合强度有关;试验温度、纤维、基体等对其断裂特征与失效模式的影响也主要是界面强度变化所致。  相似文献   

19.
为研究碳纤维织物增强树脂基摩擦材料在摩擦过程中的温度分布规律,以评价此类材料的耐热性能。采用有限元分析与单胞模型相结合的方法,分别建立浅交弯联、浅交直联和深交联3种结构的碳纤维织物增强树脂基摩擦材料有限元模型,模拟特定工况下的摩擦副热传导过程,分析织物结构和编织密度对温度分布的影响规律。结果表明:在摩擦副接合过程中,摩擦温度先升高后降低,摩擦结束时刻的最高温度出现在对偶片中心对称面处;相同编织密度时,浅交弯联织物结构导热性能最优,其摩擦温度峰值最低(仅为168.5℃,其他两种结构摩擦材料的摩擦峰值温度分别为178.0℃和172.1℃);随纬纱编织密度的增加,浅交弯联碳纤维织物增强树脂基摩擦材料中碳纤维体积分数增大,导热性能变优,摩擦峰值温度降低。  相似文献   

20.
以TC4和B4C粉末为原料,通过放电等离子烧结法(SPS)并结合热挤压制备不同含量TiB和TiC增强TC4基复合材料,研究以TC4-B4C为原位反应体系生成不同含量TiB和TiC对TMCs的微观组织和力学性能的影响规律及其高温力学性能。结果表明:原位生成的TiC和TiB与基体结合牢固,TiC呈类球形颗粒状,TiB呈晶须状;增强相在基体中呈现出沿一次颗粒边界分布的三维网络状形貌;与未增强TC4合金相比较,复合材料基体晶粒显著细化,并存在较高的位错密度,TC4基复合材料的室温和高温性能得到显著提升;在室温拉伸下,当B4C的含量(质量分数)为0.5%时,基体的连通性较好,表现出较高的强度(抗拉强度1246 MPa)和较好的伸长率(12.4%);在400℃下进行拉伸时,当B4C的含量为1.64%时,TC4基复合材料的抗拉强度和伸长率分别为1112 MPa和6.9%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号