首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《塑性工程学报》2020,(2):154-164
针对单向石墨纤维增强铝合金复合材料(CF/Al复合材料),采用细观力学数值模拟与准静态压缩试验相结合的方法研究了其轴向压缩渐进损伤与断裂力学行为,并分析了纤维体积分数对CF/Al复合材料压缩力学性能的影响。结果表明,基于纤维正六边形排布RVE建立的细观力学有限元模型对CF/Al复合材料轴向准静态压缩变形力学行为的计算结果与实验结果吻合良好。复合材料轴向压缩时首先在界面处发生损伤,界面损伤的累积随后引起局部界面失效并诱发基体合金的损伤,变形后期纤维发生失效并导致复合材料产生轴向45°压缩破坏,压缩断口呈现出界面脱粘和局部纤维断裂共存的微观形貌,表明界面脱粘及其导致的纤维断裂是诱发复合材料轴向压缩失效的主要机理。轴向压缩载荷作用下基体合金塑性变形损伤后不易发生失效,纤维性能是决定复合材料轴向压缩力学性能的主要因素,增加纤维体积分数有利于提高复合材料的轴向压缩弹性模量和极限强度。  相似文献   

2.
针对真空压力浸渗制备的碳纤维增强铝合金复合材料(CF/Al复合材料),分别采用延性损伤本构和内聚力界面本构定义基体合金和界面的损伤演化与失效行为。建立其细观力学单胞有限元模型,数值模拟获得了复合材料横向拉伸变形中基体合金和界面的细观损伤演化和失效过程,通过复合材料横向拉伸应力-应变试验曲线与数值模拟曲线对比,验证所建立细观力学有限元模型的可靠性。结合力学试验和拉伸断口分析,探索CF/Al复合材料横向拉伸变形时断裂力学行为规律及其失效机理。  相似文献   

3.
利用Hopkinson压杆实验装置对轧制复合制备的Al/Mg层状金属复合材料进行动态压缩试验,分析了动态压缩应力-应变响应特征以及不同轧制工艺对应力-应变关系的影响。结果表明,在约10^3s^-1。应变率时,Al/Mg层状金属复合材料应变率强化效应与动态热软化效应表现明显;随轧制压下率增大,材料流变应力降低;轧制温度对Al/Mg复合材料应力-应变曲线影响较大,流变应力变化规律不明显;轧后经300℃、1h退火后Al/Mg复合材料流变应力降低。镁合金断口形貌表现出解理裂纹等脆性断裂特征,伴有热软化效应产生的韧窝状撕裂棱;铝合金断口形貌主要表现为沿晶的脆性断裂并伴随晶间化合物的破断。  相似文献   

4.
选用ZL301合金为基体材料,采用2.5D浅交直联、三维正交和三维五向等3种结构编织了M40J碳纤维预制体,采用真空压力浸渗法制备纤维体积分数为50%的3D-C_f/Al复合材料。主要研究了织物结构对C_f/Al复合材料微观组织与压缩强度的影响。结果表明,织物结构对C_f/Al复合材料的致密度、微观组织和压缩性能影响较大。其中三维正交结构的C_f/Al复合材料的致密度和压缩强度最大,分别为99.2%和417MPa;而2.5D浅交直联结构的C_f/Al复合材料的致密度和压缩强度最小,分别为95.3%和99.8MPa。  相似文献   

5.
王瑶瑶  雷超  贾磊  刘君 《铸造技术》2023,(7):611-620
CNTs(carbon nanotubes)/Al复合材料在塑性变形过程中CNTs和铝基体的力学响应复杂且存在相互影响,系统、深入地揭示微观组织损伤的产生和发展机制及其对宏观力学性能的影响规律十分困难。对复合材料的变形过程进行数值模拟,可以经济、高效地研究各种微观组织和外部因素对力学性能的影响,从而实现对损伤行为的准确预测。首先介绍了目前得到广泛应用的连续损伤模型和内聚力损伤模型,二者分别适用于描述不同条件下复合材料的变形和损伤行为;随后介绍了适合多尺度建模的代表性体积元模型,其适用于研究不同尺度下的组织结构特征对变形和损伤的影响。  相似文献   

6.
针对连续碳纤维增强铝基复合材料(CF/Al复合材料),采用细观力学数值模拟与热性能试验结合的方法,研究了真空压力浸渗制备过程中的热收缩行为和热残余应力分布。结果表明,复合材料的横向热收缩应变量远大于轴向热收缩应变量,且具有横观各向同性,纤维随机分布的单胞有限元模型能够准确地预测复合材料轴向与横向热收缩行为曲线;复合材料制备完成后纤维和基体合金分别处于压应力和拉应力状态,基体和纤维的横向残余应力均小于其轴向残余应力,且均表现出横观各向同性;基体合金在轴向残余拉应力作用下会出现不同程度的损伤现象,特别是纤维间距较小部位过高的残余应力会引发界面的局部失效,从而不利于发挥复合材料承载性能,减少纤维局部偏聚是进一步改善提高复合材料力学性能的重要技术手段。  相似文献   

7.
吴清军  蔡晓兰  乐刚 《热加工工艺》2012,41(2):119-120,123
采用高能球磨法制备了SiC颗粒增强Al基复合材料,研究了SiC含量对该复合材料力学性能的影响。结果表明,SiC/Al复合材料的硬度、屈服强度以及抗拉强度随SiC含量的增加而增大,而伸长率随之减小;SiC/Al复合材料呈延性断裂和脆性断裂混合断裂;随着SiC含量的增加,材料延性断裂特征减少。  相似文献   

8.
SiCp/Al复合材料具有优异的性能,在尖端的空天装备中应用广泛,但由于其组成相碳化硅颗粒和铝合金之间存在的巨大性能差异,使得加工过程中极易出现加工损伤,严重影响SiCp/Al复合材料产品的精度和使役性能,制约着SiCp/Al复合材料的工程化应用。本文围绕SiCp/Al复合材料低损伤加工技术,从加工损伤的形成机理、加工损伤的影响因素、低损伤加工工具和加工工艺3个方面对国内外相关的研究进展进行分析,总结目前针对SiCp/Al复合材料低损伤加工技术研究现状和不足之处,并指出发展趋势和方向。  相似文献   

9.
采用粉末冶金和喷射沉积方法制备了Al及Al/SiCp复合材料,测试了材料的力学性能,利用金相显微镜和扫描电镜观察了材料的断裂行为。结果表明,Al/SiCp复合材料的强度比基体材料的高,但塑性低。粉末冶金方法制备的Al/SiCp复合材料与喷射沉积方法制备的比较,前者组织更致密,强度更高,塑性更好,断裂是SiC颗粒开裂,裂纹的传递主要沿颗粒中形成的裂纹扩展;后者断裂主要表现为SiC颗粒从基体中拔出,裂纹的传递大多是SiC颗粒周围形成的裂纹在基体中扩展。  相似文献   

10.
通过室内浸泡模拟实验方法,采用扫描Kelvin探针技术研究了SiCp/Al复合材料在Cl~-介质下初期腐蚀行为。结果表明,SiC颗粒与Al基体界面结合处是复合材料在Cl~-介质下初期腐蚀的优先发生位置,Cl~-和界面相是促进初期腐蚀发展的主要原因。随腐蚀的不断进行,复合材料先形成钝化膜,表面电位先整体正移,后钝化膜破损,表面电位整体负向移动。复合材料初期腐蚀过程表现为其钝化膜形成和逐渐破损的腐蚀特征,腐蚀产物主要为Al(OH)_3、Al_2O_3和AlCl_3。  相似文献   

11.
与长碳纤维增强铝基复合材料相比,短碳纤维增强铝基复合材料的最大优点是可以进行二次塑性加工。在复合材料塑性加工中,加工工艺参数对复合材料性能的影响很大。然而由于复合材料界面结构、成分的复杂性和微观性,实验研究无法给出定量的细节过程描述。文章借助数值模拟手段,全面细致地模拟了变形量、温度对复合材料塑性加工的影响,研究了塑性加工时复合材料的应力应变分布规律。实验结果表明,塑性加工时应变主要集中在纤维端部附近,全面进入屈服后纤维的受力随变形量的增加而缓慢增加,变形温度越高,纤维与界面的受力越小,变形越均匀,对保持纤维的长度和界面的性能越有利。  相似文献   

12.
《铸造技术》2017,(6):1314-1317
选取Mg-8.5Al-0.5Zn-0.2Mn合金、ZAlSi12合金和中间隔板1060合金为原料,采用铸造成型的方法制备出了Mg/Al层状复合材料,研究了中间隔板厚度对复合材料组织和力学性能的影响。结果表明,复合材料中Mg-8.5Al-0.5Zn-0.2Mn合金、ZAlSi12合金和中间1060合金层结合紧密、在界面处无明显缝隙或者孔洞存在;在过渡层与Mg-8.5Al-0.5Zn-0.2Mn合金和ZAlSi12合金界面处都存在一定的硬度梯度,且中间过渡层硬度都要低于Mg-8.5Al-0.5Zn-0.2Mn合金和ZAlSi12合金母材;中间隔板厚度对Mg/Al复合材料的强度影响较小,而断后伸长率随着中间隔板厚度的增加而逐渐降低。  相似文献   

13.
本文以纯铝为基体,利用搅拌摩擦加工(FSP)制备GNPs/Al复合材料,研究了复合材料基体组织、增强相与界面等微观结构与力学性能,探讨了其增强机理。结果表明,添加GNPs并经FSP后复合材料基体晶粒得到明显细化且晶界由小角度为主转变为大角度为主;FSP制备过程致使GNPs片层一定程度剥离的同时,较大片径的GNPs被破碎而形成众多边缘缺陷,使其易发生Al-C原子扩散,结果在GNPs边缘与基体形成界面过渡;GNPs加入量约1.8vol%时,复合材料的屈服强度和抗拉强度达到72MPa和147MPa,较同等条件FSP的基体分别提高了89.5%和79.3%,理论计算界面载荷传递、Orowan和细晶强化依次是复合材料的主要增强机制;随着GNPs加入量的增加,复合材料屈服强度实验值与理论值的增长趋势一致,且偏差也略有提高,但可能因GNPs在复合材料中的杂乱排布,界面载荷传递强化不能充分发挥,实际的复合材料屈服强度与理论值尚有差距。  相似文献   

14.
以细雾化铝粉和TiB2颗粒为原料,通过粉末冶金和热轧制制备微米TiB2和纳米Al2O3颗粒增强铝基复合材料。室温时,由于TiB2和Al2O3的综合强化作用,Al2O3/TiB2/Al复合材料的屈服强度和抗拉强度分别为258.7 MPa和279.3 MPa,测试温度升至350℃时,TiB2颗粒的增强效果显著减弱,原位纳米Al2O3颗粒与位错的交互作用使得复合材料的屈服强度和抗拉强度达到98.2MPa和122.5 MPa。经350℃退火1000 h后,由于纳米Al2O3对晶界的钉扎作用抑制晶粒长大,强度和硬度未发生显著的降低。  相似文献   

15.
张红哲  朱晓春  鲍永杰 《表面技术》2022,51(6):327-335, 363
目的 揭示高体积分数SiCp/Al复合材料在超声辅助加工条件下的材料去除机理。方法 采用SiCp/Al复合材料的超声辅助划切试验,探究划切参数变化对超声振幅、划切力及摩擦因数的影响规律,并通过扫描电子显微镜和激光共聚焦显微镜对划痕表面微观形貌进行观察,分析单点金刚石磨粒工具超声辅助划切材料去除的特点。结果 随着划切深度从0.01 mm增加到0.05 mm,电流值逐渐降低,电流值变化量从12 mA增加到25m A,超声振幅逐渐衰减,金刚石压头的轴向冲击作用减弱。划切深度和划切速度的增加使切向挤压切削作用增强,划切力和摩擦因数增大。在材料去除过程中,碳化硅颗粒存在破碎成小颗粒、剪切断裂破碎和拔出等多种去除形式,铝基体出现明显的塑性流动和涂覆现象,并形成切削沟槽外侧堆积。结论 当切削深度和进给速度较小时,材料去除主要是在轴向的高频振动冲击作用下完成,材料表面加工质量较好;当切削深度和进给速度逐渐增大时,材料去除是在轴向冲击破碎和切向挤压切削共同作用下完成,材料表面加工质量逐渐降低。  相似文献   

16.
针对真空压力浸渗制备的单向碳纤维增强铝合金复合材料(CF/Al复合材料),采用细观力学数值模拟与实验结合的方法研究了其横向拉伸损伤演化和断裂力学行为,并分析了界面对复合材料横向拉伸力学性能的影响。结果表明,基于基体合金延性损伤和界面内聚力损伤本构所建立的细观单胞有限元模型,可以实现CF/Al复合材料横向拉伸弹塑性力学响应的计算和预测。复合材料横向拉伸时先后发生界面损伤、界面失效以及基体损伤累积与失效现象,界面损伤脱粘并诱发基体塑性损伤和失效是导致复合材料横向断裂的主要机理。增加界面强度有利于提高横向拉伸屈服强度和极限强度,界面刚度对极限强度影响不大,但增加界面刚度可有效提高复合材料横向拉伸弹性模量。  相似文献   

17.
C/CF/Cu复合材料界面和抗拉强度研究   总被引:3,自引:0,他引:3  
采用树脂碳化方法制备了碳/碳纤维(C/CF)先驱丝,用压力浸渗凝固成型方法制备了碳/碳纤维/铜(C/CF/Cu)复合材料,借助抗拉强度测试及扫描电镜下复合材料界面和相组成物分布观察,探讨了C、CF和Cu三组元复合界面特性以及碳纤维丝类型和C/CF先驱丝体积分数对C/CF/Cu复合材料抗拉强度的影响.结果表明,C/CF/Cu复合材料的微观界面是碳纤维单丝-树脂碳化碳-铜双复合界面,此界面属于无化学反应的弱复合界面,铜对C/CF先驱丝的机械锁紧力是提高界面强度和复合材料强度的关键因素.当凝固成型压力为28.5MPa时,1k碳纤维丝的C/CF先驱丝体积分数为25%和3k碳纤维丝的C/CF先驱丝体积分数为44.7%的复合材料的抗拉强度达到较高值,分别为595MPa和587MPa,均为纯铜抗拉强度的3倍以上.3k丝制成的一次C/CF先驱丝内碳纤维丝的数量较多,影响复合材料的界面强度,而选用1k碳纤维丝比较有利.  相似文献   

18.
采用高能球磨粉末冶金法制备了10vol%nano-SiC颗粒增强纯Al基复合材料,研究了球磨时间和硬脂酸含量对复合粉末粒度和纳米颗粒分散均匀性的影响规律,并对复合材料的微观结构和拉伸性能进行了研究.结果表明,随球磨时间的延长,SiC颗粒在Al 中的分散均匀性变好,而复合粉颗粒的粒径先减小后增大,在球磨时间为15 h、过程控制剂硬脂酸含量为2wt%时复合粉末粒径最小.并采用此优化的混料工艺,制备出综合性能良好祅ano-SiCp/Al复合材料,其抗拉强度达到392.7 MPa,较纯Al提高了164.9%,伸长率达10.41%,较纯Al有所下降.复合材料的断裂机制是微孔聚集型断裂.  相似文献   

19.
首先以Ti粉、Al粉和石墨粉为原料,在氩气保护条件下,用自蔓延高温合成(SHS)方法制备了TiC/Al2O3复合材料粉体.在1600℃,氩气保护条件下热压烧结制成块体复合材料.研究了复合材料的烧结密度、强度、硬度、韧性等力学性能,并讨论了力学性能与微观结构之间的关系.  相似文献   

20.
《塑性工程学报》2016,(4):112-118
基于复合材料扫描电镜图像,通过图像处理和识别技术,建立复合材料真实微观结构有限元模型,利用该微观模型对SiCp/2024Al复合材料在准静态与动态下的力学性能进行研究。结果表明,SiCp/2024Al复合材料在准静态与动态下的力学性能有显著差异,随着应变率增大,复合材料的弹性模量、屈服强度、流动应力均增大,在高应变率下复合材料出现应变软化现象;在动态压缩过程中,高体积分数SiCp/2024Al复合材料其承载机理与低体积分数复合材料不同;SiCp/2024Al复合材料在加载过程中同时受到应变硬化、应变率硬化作用,并随着增强体SiC颗粒体积分数增大,应变率敏感率随之增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号