首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
催化化学气相沉积法合成单壁纳米碳管的研究进展   总被引:1,自引:0,他引:1  
介绍了合成单壁纳米碳管的三种主要方法,总结了国内外催化化学气相沉积法合成单壁纳米碳管的研究现状,着重介绍了催化剂对合成单壁纳米碳管影响的研究情况,并分析了反应工艺条件对合成单壁纳米碳管的影响.  相似文献   

2.
研究以环己烷为前驱体采用化学气相沉积法制备纳米碳管阵列。将催化剂二茂铁定量溶解在环己烷中,通过载气夹带进入反应器中,采用化学气相沉积方法定向生长出炭纳米管阵列,此法有效地控制反应体系中的催化剂含量,使生产稳定性及重现性较好。并通过透射电子显微镜、扫描电子显微镜、拉曼光谱及X射线衍射对产品形态和结构进行分析和表征,所制备出的纳米碳管阵列形态比较规整,纯度较高,具有较好的石墨微晶结构;并对纳米碳管的生长机理进行了详细讨论。  相似文献   

3.
碳氢化合物气相催化热分解制备纳米碳管的研究   总被引:3,自引:0,他引:3  
主要研究了碳氢化合物气相催化热分解制备纳米碳管的方法:浮游催化法,并对其结果作了深入讨论。使用浮游催化法可以制得大量、高质、等径、笔直的纳米碳管,也可以用这种方法来制备单壁纳米管。通过场发射透射电子显微镜(TEM)对产物形貌进行观察分析,在实验中考察了对纳米碳管生长具有显著影响的几个工艺参数,诸如含硫添加剂、反应温度以及氢气流速等,讨论了它们对产物形貌的影响,并对它们的作用机理进行了初步探讨。采用正交实验的方法找到了浮游催化法制备纳米碳管的最优工艺参数。  相似文献   

4.
利用微波等离子体化学气相沉积法制备了与电极基底结合良好的纳米碳管电极,用空气等离子体将该纳米碳管电极功能化,并以功能化的电极为工作电极,利用循环伏安法对毒性很强的酚的混合物进行检测。根据氧化还原峰电位的不同可以区分出邻苯二酚和对苯二酚,与石墨电极相比,功能化的纳米碳管电极具有更好的电催化性能。利用该电极测定酚的混合物是一种准确、快速、有效的测定方法。合成纳米碳管电极的最佳工艺条件为:功率为400 W,压强为3.0 kPa,甲烷流速为2 mL/m in,氢气流速为50 mL/m in;功能化纳米碳管的最佳工艺条件为:功率为150 W,压强为1.0 kPa,空气的流速为50 mL/m in。  相似文献   

5.
用等离子化学气相沉积工艺制备Al2O3薄膜   总被引:1,自引:0,他引:1  
赵玉文 Suhr  H 《硅酸盐学报》1994,22(1):102-106
以乙酰丙酮铝Al(acac)3为前驱体用等离子化学气相沉积工艺在玻璃、石英、Si(100)和Ni等底材上沉积出了Al2O3薄膜。所获得的沉积膜或无碳、透明、致密(平均3.8g·cm^-3),或为透明致密的硬质(硬度Hk达2370)涂层。研究了各种实验参数对沉积速率、薄膜组成及膜层硬度的影响,认为偏压是具影响的参数。  相似文献   

6.
7.
采用化学气相沉积方法在基体上生长螺旋状纳米碳纤维,以Ni为催化剂热解乙炔可制备出纯净、规则的单、双螺旋形碳纤维,单螺旋纤维的直径约为1—2μm,双螺旋的直径约为2—5wm;同时伴有少量的不规则螺旋形碳纤维的生成。拉曼光谱和X射线衍射分析证明螺旋形碳纤维是由小石墨微晶组成。根据机体法制备螺旋形的形貌、结构和生长过程,提出了螺旋形碳纤维的生长机制。  相似文献   

8.
采用酒石酸铜前驱体热分解得到纳米铜粒子作为催化剂,分别对250℃、280℃、310℃分解产生的纳米铜粒子进行测试分析,在3个温度下用化学气相沉积法生长螺旋纳米碳纤维并进行综合热分析。采用X-射线衍射(XRD)分析其物相组成,晶粒大小;用扫描电子显微镜(SEM)观察螺旋纳米纤维的外观形貌。结果表明,310℃生长出的螺旋纳米碳纤维纯度高、外观形貌清晰,热分析质量损失少。  相似文献   

9.
用CVD法制备纳米碳管催化剂的工艺研究   总被引:4,自引:0,他引:4  
用CVD法制备纳米碳管的关键是催化剂。在催化剂的制备工艺过程中,配料比、沉淀条件、还原、灼烧、干燥的时间和温度等不同、载体的不同,都会影响纳米碳管的产量。  相似文献   

10.
纳米碳管的制备及其应用   总被引:1,自引:0,他引:1  
本文综述了纳米碳管的制备及应用,展望了纳米碳管广阔的应用前景。  相似文献   

11.
12.
Robert J. Andrews 《Carbon》2006,44(2):341-347
Single walled nanotubes have been synthesized by chemical vapor deposition from camphor, camphor analogs (camphorquinone, norcamphor, norbornane, camphene, fenchone), and various other precursors (menthone, 2-decanone, benzene, methane). The high temperature conditions (865 °C) and Fe/Mo alumina catalyst used in the syntheses are archetypal conditions for the production of single walled carbon nanotubes. It has been shown that the mechanism of tube growth is unlikely to depend upon the production of reactive five- and six-member rings, as has been previously suggested. The results suggest that the presence of oxygen in the precursor does not significantly improve the quality of tubes by etching amorphous carbon: it is suggested that the control of the flux of the precursor to the catalyst is more important in the production of high quality tubes. There is, however, evidence for different distributions of tube diameter being produced from different precursors.  相似文献   

13.
Se-Jin Kyung 《Carbon》2006,44(8):1530-1534
Carbon nanotubes (CNTs) were grown using a modified atmospheric pressure plasma with NH3(210 sccm)/N2(100 sccm)/C2H2(150 sccm)/He(8 slm) at low substrate temperatures (?500 °C) and their physical and electrical characteristics were investigated as the application to field emission devices. The grown CNTs were multi-wall CNTs (at 450 °C, 15-25 layers of carbon sheets, inner diameter: 10-15 nm, outer diameter: 30-50 nm) and the increase of substrate temperature increased the CNT length and decreased the CNT diameter. The length and diameter of the CNTs grown for 8 min at 500 °C were 8 μm and 40 ± 5 nm, respectively. Also, the defects in the grown CNTs were also decreased with increasing the substrate temperature (The ratio of defect to graphite (ID/IG) measured by FT-Raman at 500 °C was 0.882). The turn-on electric field of the CNTs grown at 450 °C was 2.6 V/μm and the electric field at 1 mA/cm2 was 3.5 V/μm.  相似文献   

14.
Oriented nanotube films (20-35 μm thick) were synthesised on flat silicon substrates by chemical vapor deposition (CVD) of a gas mixture of acetylene and nitrogen. For the CVD we used metal oxide clusters formed by spin coating an iron(III) nitrate ethanol solution onto a silicon substrate and subsequent heating. The cluster density and its effects on the nanotube density were investigated as a function of the iron(III) nitrate concentration and the synthesis temperature. A high nanotube density was achieved with a high density of iron oxide clusters as nucleation centres for the growth of nanotubes. The cluster density was controlled by the iron(III) concentration of the ethanolic coating solution and by the synthesis temperature. The perpendicular orientation of the nanotubes with respect to the substrate surface is attributed to a high density of nanotubes.  相似文献   

15.
We have synthesized double wall carbon nanotubes (DWNTs) with few defects and little amorphous carbon by hot wall chemical vapor deposition (CVD) of alcohol. Catalysts for the DWNT growth were made from cobalt and molybdenum acetates. Scanning electron microscopy, transmission electron microscopy, multi frequency resonance Raman spectroscopy and optical absorption spectroscopy were used for characterization of the product with regard to DWNT yield, the nanotube diameter distribution, defect concentration and amorphous carbon content. Base pressures lower than 1 × 10−5 mbar in the CVD reactor considerably suppress defects in the DWNTs. Optimized growth conditions for DWNT formation are presented.  相似文献   

16.
Kinghong Kwok 《Carbon》2005,43(12):2571-2578
Continuous deposition of carbon nanotubes under open-air conditions on a moving fused quartz substrate is achieved by pyrolytic laser-induced chemical vapor deposition. A CO2 laser is used to heat a traversing fused quartz rod covered with bimetallic nanoparticles. Pyrolysis of hydrocarbon precursor gas occurs and subsequently gives rise to rapid growth of a multi-wall carbon nanotube forest on the substrate surface. A “mushroom-like” nanotube pillar is observed, where a random orientation of carbon nanotubes is located at the top of the pillars while the growth is more aligned near the base. The typical carbon nanotube deposition rate achieved in this study is approximately 50 μm/s. At high power laser irradiation, various carbon microstructures are formed as a result of excessive formation of amorphous carbon on the substrate. High-resolution transmission and scanning electron microscopy, and X-ray energy-dispersive spectrometry are used to investigate the deposition rate, microstructure, and chemical composition of the deposited carbon nanotubes.  相似文献   

17.
A simple and efficient approach for coating multiwalled carbon nanotubes (MWCNTs) with size-controllable SnO2 nanoparticles by chemical vapor deposition has been developed using tin hydride (SnH4) gas as the source of SnO2 at 550 °C. The size and coverage of SnO2 nanoparticles can be adjusted by simply controlling the deposition time and the flow rate of the SnH4/N2 mixture gas during the CVD procedure. In addition, by using the MWCNTs as a sacrificial template, a kind of one-dimensional chain-like SnO2 nanostructure has been synthesized by increasing the deposition temperature to 730 °C. This technique may provide a good way to produce tunable SnO2-MWCNT composites.  相似文献   

18.
Kinghong Kwok 《Carbon》2005,43(2):437-446
Carbon nanotubes have remarkable mechanical, electronic and electrochemical properties, but the full potential for application will be realized only if the growth of high quantity and quality carbon nanotubes can be optimized and well controlled. In this study, carbon nanotubes have been successfully grown on fused quartz rods by a novel open-air laser-induced chemical vapor deposition (LCVD) technique with gold palladium nanoparticles as catalyst material. In this LCVD technique, a curtain of inert nitrogen gas was used to shield the deposition zone from the surrounding environment and allows the growth of the nanotubes to occur under open-air conditions. A 35-W continuous CO2 laser was used as a heat source to induce a local temperature rise on the substrate surface covered with metal nanoparticles, subsequently resulting in deposition of multi-wall carbon nanotubes. The carbon nanotubes deposited in this study are derived from a precursor mixture that consists of propane and hydrogen, and are in tangled form with different diameters (10-250 nm) and structures. Raman spectroscopy, transmission and scanning electron microscopy are used to investigate the microstructure and composition of the carbon nanotubes.  相似文献   

19.
Mei Lu  Xin-Yong Guo 《Carbon》2004,42(4):805-811
Coiled carbon nanotubes were prepared by catalytic chemical vapor deposition (CCVD) on finely divided Co nano-particles supported on silica gel under reduced pressure and relatively low gas flow rates. The morphology and the graphitization of the coil tube, coil bend, and coil node of the coiled carbon nanotubes were examined by transmission electron microscope (TEM). The influence of pH value, reaction pressure, and flow rate of C2H2 on the growth of the coiled carbon nanotubes were also discussed. With the drastic reduction in the consumption of C2H2 and lower required pressure with the modified CCVD approach, the amount of amorphous carbon coated on the carbon nanotubes was shown to be greatly reduced. Most importantly, this method offers a preferable alternative for the efficient, environment-friendly and safer growth of coiled carbon nanotubes.  相似文献   

20.
Chunlei Wang  Rabih Zaouk  Marc Madou 《Carbon》2006,44(14):3073-3077
The addition of nanofeatures to carbon microelectromechanical system (C-MEMS) structures would greatly increase surface area and enhance their performance in miniature batteries, super-capacitors, electrochemical and biological sensors. Negative photoresist posts were patterned on a Au/Ti contact layer by photolithography. After pyrolyzing the photoresist patterns to carbon patterns, graphitic nanofibers were observed near the contact layer. The incorporation of carbon nanofibers in C-MEMS structures via a simple pyrolysis of modified photoresist was investigated. Both experimental results considered to consist of a local chemical vapor deposition mechanism. The method represents a novel, elegant and inexpensive way to equip carbon microfeatures with nanostructures, in a process that could possibly be scaled up to the mass production of many electronic and biological devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号