首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In order to improve the oxidation resistance of carbon/carbon (C/C) composites, a ZrSiO4 coating on SiC pre-coated C/C composites was prepared by a hydrothermal electrophoretic deposition process. Phase compositions and microstructures of the as-prepared ZrSiO4/SiC coating were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS). The anti-oxidation property and failure mechanism of the multi-layer coating were investigated. Results show that hydrothermal electrophoretic deposition is an effective route to prepare crack-free ZrSiO4 outer coatings. The multi-layer coating obviously exhibits two-layer structure. The inner layer is composed of SiC phase and the outer layer is composed of ZrSiO4 phase. The bonding strength between the outer layer coatings and C/C–SiC substrate are 30.38 MPa. The ZrSiO4/SiC coating displays excellent oxidation resistance and can protect C/C composites from oxidation at 1773 K for 332 h with a mass loss rate of only 0.48 × 10− 4 g/cm2·h. The mechanical properties of the specimens are 84.36 MPa before oxidation and 68.29 MPa after oxidation. The corresponding high temperature oxidation activation energy of the coated C/C composites at 1573–1773 K is calculated to be 119.8 kJ/mol. The oxidation process is predominantly controlled by the diffusion rate of oxygen through the ZrSiO4/SiC multi-coating. The failure of the coating is due to the formation of penetrative holes between the SiC bonding layer and the C/C matrix at 1773 K.  相似文献   

2.
In order to prevent carbon/carbon (C/C) composites from oxidation at 1773 K, a Si-W-Mo coating was prepared on the surface of SiC coated C/C composites by a simple pack cementation technique. The microstructures and phase composition of the as-received multi-coating were examined by SEM, XRD and EDS. It was seen that the compact multi-coating was composed of α-SiC, Si and (WxMo1 − x)Si2. Oxidation behaviour of the SiC/Si-W-Mo coated C/C composites was also studied. After 315 h oxidation in air at 1773 K and thermal cycling between 1773 K and room temperature for 17times, no weight loss of the as-coated C/C composites was measured. The excellent anti-oxidation ability of the multi-coating is attributed to its dense structure and the formation of the stable glassy SiO2 film on the coating surface during oxidation.  相似文献   

3.
To protect carbon/carbon (C/C) composites against oxidation, ZrSiO4 oxidation protective coating was prepared on SiC-coated C/C composites by supersonic plasma spraying. X-ray diffraction and scanning electron microscopy were used to analyze the phase and microstructure of the coating. The results show that the as-prepared ZrSiO4 coating is continuous and well bonded with the SiC inner layer without penetrating crack, which exhibits good oxidation-resistant properties. After oxidation at 1773 K in air for 97 h and nine thermal shock cycles between 1773 K and room temperature, the weight loss of the coated C/C composites was only 0.08%. The excellent oxidation-resistant properties of the coating were attributed to its dense structure and the formation of the stable ZrO2-SiO2 glassy mixture on the surface of ZrSiO4 coating.  相似文献   

4.
To improve the oxidation resistance of carbon/carbon (C/C) composites in air at high temperatures, a SiC–MoSi2/ZrO2–MoSi2 coating was prepared on the surface of C/C composites by pack cementation and slurry method. The microstructures and phase compositions of the coated C/C composites were analyzed by scanning electron microscopy and X-ray diffraction, respectively. The result shows that the SiC–MoSi2/ZrO2–MoSi2 coating is dense and crack-free with a thickness of 250–300 μm. The preparation and the high temperature oxidation property of the coated composites were investigated. The as-received coating has excellent oxidation protection ability and can protect C/C composites from oxidation for 260 h at 1773 K in air. The excellent anti-oxidation performance of the coating is considered to come from the formation of ZrSiO4, which improves the stability of the coating at high temperatures.  相似文献   

5.
Multi-layer MoSi2-CrSi2-Si anti-oxidation coatings with different compositional ratios were prepared on the surface of SiC coated carbon/carbon (C/C) composites by a two-step pack cementation method. The microstructure and anti-oxidation performance of the coating were studied. The results show that the multi-layered coatings could protect the C/C composites from oxidation in air at 1773 K for 1000 h or 1873 K for 750 h, respectively. The anti-oxidation performance of the multi-layer MoSi2-CrSi2-Si coating is mainly attributed to their dense and microcrack-free structure, appropriate thermal expansion coefficient and the well dispersed MoSi2 and CrSi2 in the coating.  相似文献   

6.
To improve the oxidation resistance of carbon/carbon (C/C) composites, a C/SiC/MoSi2–Si multilayer oxidation protective coating was prepared by slurry and pack cementation. The microstructure of the as-prepared coating was characterized by scanning electron microscopy, X-ray diffraction and energy dispersive spectroscopy. The isothermal oxidation and erosion resistance of the coating was investigated in electrical furnace and high temperature wind tunnel. The results showed that the multilayer coating could effectively protect C/C composites from oxidation in air for 300 h at 1773 K and 103 h at 1873 K, and the coated samples was fractured after erosion for 27 h at 1873 K h in wind tunnel. The weight loss of the coated specimens was considered to be caused by the formation of penetration cracks in the coating. The fracture of the coated C/C composites might result from the excessive local stress in the coating.  相似文献   

7.
To protect carbon/carbon (C/C) composites against oxidation, a MoSi2 outer coating was prepared on pack-cementation SiC coated C/C composites by a hydrothermal electrophoretic deposition. The phase composition, microstructure and oxidation resistance of the prepared MoSi2/SiC coatings were investigated. Results show that hydrothermal electrophoretic deposition is an effective route to achieve crack-free MoSi2 outer coatings. The MoSi2/SiC coating can protect C/C composites from oxidation at 1773 K for 346 h with a weight loss of 2.49 mg cm−2 and at 1903 K for 88 h with a weight loss of 5.68 mg cm−2.  相似文献   

8.
To protect carbon/carbon (C/C) composites against oxidation, a Si–Mo coating was prepared on C/SiC-coated C/C composites by a simple slurry method. The microstructure of the coating was characterized by X-ray diffraction, scanning electron microscopy and Raman spectra. Results showed that the coating was mainly composed of SiC, MoSi2 and Si. It could protect C/C composites from oxidation at 1873 K in air for 300 h and withstand 13 thermal cycles between room temperature and 1873 K. The excellent oxidation and thermal shock resistance of the coating was attributed to the formation of dense SiO2 glass at high temperature. The volatilization of MoO3 and SiO2 at 1873 K was the main reason of the weight loss of the coated C/C composites.  相似文献   

9.
To protect carbon/carbon (C/C) composites from oxidation, a dense coating has been produced by a two-step pack cementation technique. XRD and SEM analysis shows that the as-obtained coating was composed of MoSi2, SiC and Si with a thickness of 80-100 μm. The MoSi2-SiC-Si coating has excellent anti-oxidation property, which can protect C/C composites from oxidation at 1773 K in air for 200 h and the corresponding weight loss is only 1.04%. The weight loss of the coated C/C composites is primarily due to the reaction of C/C substrate and oxygen diffusing through the penetration cracks in the coating.  相似文献   

10.
To improve the oxidation resistance of C/C composites, a double SiC protective coating was prepared by a two-step technique. Firstly, the inner SiC layer was prepared by a pack cementation technique, and then an outer uniform and compact SiC coating was obtained by low pressure chemical vapor deposition. The microstructures and phase compositions of the coatings were characterized by SEM, EDS and XRD analyses. Oxidation behaviour of the SiC coated C/C composites was also investigated. It was found that the double SiC coating could protect C/C composites against oxidation at 1773 K in air for 178 h with a mass loss of 1.25%. The coated samples also underwent thermal shocks between 1773 K and room temperature 16 times. The mass loss of the coated C/C composites was only 2.74%. Double SiC layer structures were uniform and dense, and can suppress the generation of thermal stresses, facilitating an excellent anti-oxidation coating.  相似文献   

11.
A MoSi2–CrSi2–SiC–Si multi-component coating was prepared on the surface of carbon/carbon (C/C) composites by a two-step pack cementation method. The microstructure, oxidation behavior and mechanical properties of the coating were studied. These results show that the multi-component coating could protect the C/C composites from oxidation in air at 1873 K for 300 h and withstand 30 thermal cycles between 1873 K and room temperature, respectively. The mass loss and mechanical property loss of the coated C/C composites are considered due to the worse fluidity of SiO2 at intermediate temperatures and the thermal mismatch between the coating and C/C composites.  相似文献   

12.
C/SiC/MoSi2–SiC–Si oxidation protective multilayer coating for carbon/carbon (C/C) composites was prepared by pack cementation and slurry method. The microstructure, element distribution and phase composition of the as-received coating were analyzed by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The results show that the multilayer coating was composed of MoSi2, SiC and Si. It could effectively protect C/C composites against oxidation for 200 h with the mass loss of 3.25% at 1873 K in static air. The mass loss of the coated C/C composites results from the volatilization of SiO2 and the formation of cracks and bubble holes in the coating.  相似文献   

13.
To protect carbon/carbon (C/C) composites against oxidation, a B2O3 modified SiC–MoSi2 coating was prepared by a two-step pack cementation. The microstructure and the oxidation resistant property of the coating were studied. The results show that, the as-received coating is a dense structure, and is composed of α-SiC, β-SiC and MoSi2. The B2O3 modified SiC–MoSi2 coating has excellent oxidation resistant property, and can protect C/C composites from oxidation at 1773 K in air for more than 242 h. The failure of the coating was considered to arise from the existence of the penetration cracks in the coating during the slow cooling from 1873 to 673 K.  相似文献   

14.
A SiC/ZrSiO4–SiO2 (SZS) coating was successfully fabricated on the carbon/carbon (C/C) composites by pack cementation, slurry painting and sintering to improve the anti-oxidation property and thermal shock resistance. The anti-oxidation properties under different oxygen partial pressures (OPP) and thermal shock resistance of the SZS coating were investigated. The results show that the SZS coated sample under low OPP, corresponding to the ambient air, during isothermal oxidation was 0.54% in mass gain after 111 h oxidation at 1500 °C and less than 0.03% in mass loss after 50 h oxidation in high OPP, corresponding to the air flow rate of 36 L/h. Additionally, the residual compressive strengths (RCS) of the SZS coated samples after oxidation for 50 h in high OPP and 80 h in low OPP remain about 70% and 72.5% of those of original C/C samples, respectively. Moreover, the mass loss of SZS coated samples subjected to the thermal cycle from 1500 °C in high OPP to boiling water for 30 times was merely 1.61%.  相似文献   

15.
To prevent carbon/carbon (C/C) composites from oxidation, a dense SiC nanowire-toughened SiC-MoSi2-CrSi2 multiphase coating was prepared by the two-step technique composed of chemical vapor deposition (CVD) and pack cementation. The coatings were characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). SiC nanowires could decrease the dimension of cracks and improve the oxidation and thermal shock resistance of SiC-MoSi2-CrSi2 multiphase coating. Oxidation test shows that, after introducing SiC nanowires, the weight loss of the coated sample can be reduced from 1.06% to 0.64% after oxidation at 1773 K for 155 h and decreased from 6.92% to 3.42% after thermal cycling between 1773 K and room temperature for 30 times.  相似文献   

16.
通过磁控溅射法在碳/碳复合材料表面成功制得了SiC/MoSi2-ZrB2陶瓷涂层并对结构及其在高温有氧环境中的抗氧化性能进行了研究。结果表明制备的SiC/MoSi2-ZrB2陶瓷涂层呈柱状晶结构且均匀性良好,其在1273K和1773K的有氧环境中氧化60min失重率分别是5.6×10-2 g/cm2 和 6.3×10-2 g/cm2。  相似文献   

17.
SiC/SiC–YAG–YSZ coatings were prepared by pack cementation, chemical vapor deposition and slurry painting on carbon/carbon (C/C) composites. The microstructures and oxidation behavior of coatings were investigated. The results show that the coatings displayed good oxidation and thermal shock resistance due to a dense glassy layer with silicates formed on the coating of SiC–YAG–YSZ. The weight gain rate of coated C/C composites was 1.77% after oxidation for 150 h at 1773 K. SiC in outer coating can promote the formation of oxygen diffusion barrier and lead to the optimum oxidation resistance for the coatings, compared with YSZ and YAG.  相似文献   

18.
To protect carbon/carbon (C/C) composites from oxidation at high temperature, a Si-W-Cr coating was prepared on the surface of SiC coated C/C composites by a simple pack cementation technique. The microstructure and phase composition of the as-received multi-coating were examined by SEM, XRD and EDS. The coating obtained by first step pack cementation was porous α-SiC structure. New phases of WSi2 and CrSi2 together with α-SiC deposited on the porous SiC inner layer. Oxidation test shows that the weight loss of single SiC coated C/C is up to 8.21% after 9 h in air at 1773 K, while the weight loss of Si-W-Cr/SiC coated C/C composites is only 2.26% after 51 h. After thermal cycling between 1773 K and room temperature for 40 times, the weight loss is only 3.36%. The weight loss of coated C/C composites was primarily due to the reaction of C/C matrix and oxygen diffusing through the penetrable cracks in the coating.  相似文献   

19.
A C/SiC oxidation resistance coating was prepared on carbon/carbon (C/C) composites by slurry and pack cementation. The microstructure, oxidation resistance and mechanical properties of C/SiC coating prepared from 1773 to 2573 K were investigated. With the increase of the preparation temperature, the oxidation resistance of C/SiC coating increases, however, the flexure strength decreases gradually. The preparation of C/SiC coating on C/C composites results in the fracture behavior of C/C composites changing from pseudo-plastic to brittle failure model. The decrease of flexure strength is mainly attributed to the decrease of C/C matrix’ flexure strength at high temperature.  相似文献   

20.
To improve the oxidation resistance of SiC coating produced by pack cementation for carbon/carbon composites, a modified SiC coating has been produced by one-step pack cementation by adding ferrocene in pack compositions. The as-received coating exhibited a dual-layer dense structure, and oxidation protective ability of SiC coating could be improved by introducing ferrocene. The modified coating could protect C/C composites from oxidation for more than 100 h at 1673 K in air. The weight loss of the coated C/C composites was considered to arise from deflection of penetrating cracks formed in outer layer from inner layer to C/C matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号