首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Connecting multihop mobile ad hoc wireless networks (MANETs) to the Internet would enable MANET nodes to share wireless Internet access with mobile hosts that are one‐hop away from their foreign networks. The integration of MANETs and the global Internet, however, faces an obstacle due to their network architectural mismatches regarding their infrastructure, topology, and mobility management mechanisms. Solutions to the integration problem should introduce an intermediate facility with hybrid mechanism, enabling it to connect to both networks. The quality of the multihop wireless Internet access service provided to MANET nodes depends on the design quality of this facility in order for MANET nodes to enjoy their Internet connectivity anywhere and anytime without much disconnections. In this paper, we propose hierarchical architecture that uses group mobility and multihomed mobile gateways, and present and analyse different simulations results. A multihomed mobile gateway can simultaneously connect to multiple Mobile IP foreign agents, provided it is located within their overlapping coverage area. It runs updated versions of the destination‐sequenced distance vector (DSDV) and Mobile IP protocols, and is responsible for providing MANET nodes with wireless Internet access though they are multiple wireless hops away from the edge of the Internet. The rationale behind using multihoming is to increase reliability of the Internet access service and enhance performance of the integrated network. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
The integration of the Mobile Ad Hoc Networks (MANETs) into 4G systems will help to increase the networking flexibility and coverage of existing infrastructure networks. One of the crucial challenges is modifying existing reactive ad hoc routing protocols to support external routing operations. This paper contributes thorough protocol extensions for connecting DSR‐based MANETs with the Internet (DSR‐IE). DSR routing protocol is extended to effectively support External Route Discovery and External Route Maintenance functions. In particular, a novel External Route Discovery scheme, Comprehensive External Route Judgment, (CERJ) is proposed. Mobile IP is utilized to manage seamless data services. Finally, OPNET simulation models are developed to demonstrate the implementability and effectiveness of the proposed schemes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
A mobile ad hoc network (MANET) is an autonomous collection of mobile nodes that communicate over relatively bandwidth‐constrained wireless links. MANETs need efficient algorithms to determine network connectivity, link scheduling, and routing. An important issue in network routing for MANETs is to conserve power while still achieve a high packet success rate. Traditional MANET routing protocols do not count for such concern. They all assume working with unlimited power reservoirs. Several ideas have been proposed for adding power‐awareness capabilities to ad hoc networks. Most of these proposals tackle the issue by either proposing new power‐aware routing protocols or modifying existing routing protocols through the deployment of power information as cost functions. None of them deal with counter‐measures that ought to be taken when nodes suffer from low power reserves and are subject to shut down in mid of normal network operations. In this paper, power‐awareness is added to a well‐known traditional routing protocol, the ad hoc on‐demand distance vector (AODV) routing protocol. The original algorithm is modified to deal with situations in which nodes experience low power reserves. Two schemes are proposed and compared with the original protocol using different performance metrics such as average end‐to‐end delays, transmission success rates, and throughputs. These schemes provide capabilities for AODV to deal with situations in which operating nodes have almost consumed their power reserves. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
In ad hoc wireless networks, most data are delivered by multi‐hop routing (hop by hop). This approach may cause long delay and a high routing overhead regardless of which routing protocol is used. To mitigate this inherent characteristic, this work presents a novel ad hoc network structure that adopts dual‐card‐mode, self‐organization with specific IP naming and channel assignment to form a hierarchical star graph ad hoc network (HSG‐ad hoc). This network not only expedites data transmission but also eliminates the route discovery procedure during data transmission. Therefore, the overall network reliability and stability are significantly improved. Simulation results show that the proposed approach achieves substantial improvements over DSDV, AODV, and DSR in terms of average end‐to‐end delay, throughput, and packet delivery ratio. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Following recent advances in the performance of ad hoc networks, the limited life of batteries in mobile devices poses a bottleneck in their development. Consequently, how to minimize power consumption in the Medium Access Control (MAC) layer of ad hoc networks is an essential issue. The power‐saving mode (PSM) of IEEE 802.11 involves the Timing Synchronization Function to reduce power consumption for single‐hop mobile ad hoc networks (MANETs). However, the IEEE 802.11 PSM is known to result in unnecessary energy consumption as well as the problems of overheating and back‐off time delay. Hence, this study presents an efficient power‐saving MAC protocol, called p‐MANET, based on a Multi‐hop Time Synchronization Protocol, which involves a hibernation mechanism, a beacon inhibition mechanism, and a low‐latency next‐hop selection mechanism for general‐purpose multi‐hop MANETs. The main purposes of the p‐MANET protocol are to reduce significantly the power consumption and the transmission latency. In the hibernation mechanism, each p‐MANET node needs only to wake up during one out of every N beacon interval, where N is the number of beacon intervals in a cycle. Thus, efficient power consumption is achieved. Furthermore, a beacon inhibition mechanism is proposed to prevent the beacon storm problem that is caused by synchronization and neighbor discovery messages. Finally, the low‐latency next‐hop selection mechanism is designed to yield low transmission latency. Each p‐MANET node is aware of the active beacon intervals of its neighbors by using a hash function, such that it can easily forward packets to a neighbor in active mode or with the least remaining time to wake up. As a consequence, upper‐layer routing protocols can cooperate with p‐MANET to select the next‐hop neighbor with the best forwarding delay. To verify the proposed design and demonstrate the favorable performance of the proposed p‐MANET, we present the theoretical analysis related to p‐MANET and also perform experimental simulations. The numerical results show that p‐MANET reduces power consumption and routing latency and performs well in extending lifetime with a small neighbor discovery time. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
LSCR:一种Mobile Ad hoc网络链路状态分组路由算法   总被引:4,自引:0,他引:4       下载免费PDF全文
熊焰  苗付友  王行甫 《电子学报》2003,31(5):645-648
本文提出了一种Mobile Ad hoc网络(Manet)链路状态分组路由算法(Link State-hased Cluster Routing Algo-rithm-LSCR),该算法对Manet节点进行动态分组,每一组选举出一个具有最大度数的头结点(CH-Cluster Header),该cH负责本组信息的管理、组内结点与组外结点之间的通信以及与其他组的CH之间交换链路状态信息等工作.本算法将改进的链路状态协议与分组路由协议有机结合,有效提高了Manet网络的路由效率.分析和实验结果表明,这种算法具有路由收敛速度快、维护成本相对较低,数据包发送成功率高,发送等待时间短等特点。  相似文献   

7.
IP header compression schemes offer a valuable measure for bandwidth preservation. Such schemes have been practically implemented in infrastructure‐based IP networks for point‐to‐point links. However, minimal research and practical implementation efforts have been conducted in the direction of an IP header compression strategy that can meet the peculiar requirements of multi‐hop ad hoc wireless networks. In this paper, we present a practically implemented multi‐hop IP header compression scheme using the Robust Header Compression (ROHC) protocol suite. The scheme runs on a novel identifier (ID) based networking architecture, known as an ID‐based ad hoc network (IDHOCNET). IDHOCNET additionally solves a number of bottlenecks of pure IP‐based ad hoc networks that have emerged owing to IP address auto‐configuration service, distributed naming and name resolution, and the role of an IP address as an identifier at the application layer. The proposed scheme was tested on a multi‐hop test bed. The results show that the implemented scheme has better gain and requires only O (1) ROHC contexts.  相似文献   

8.
Integration of ad hoc networks with the Internet provides global Internet connectivity for ad hoc hosts through the coordination of mobile IP and ad hoc protocols. In a pure ad hoc network, it is difficult to establish trust relationship between two ad hoc hosts due to lack of infrastructure or centralized administration. In this paper, an infrastructure‐supported and distributed authentication protocol is proposed to enhance trust relationships amongst ad hoc hosts. In addition, an effective secure routing protocol (SRP) is discussed to protect the multi‐hop route for Internet and ad hoc communication. In the integrated ad hoc networks with Internet accessibility, the ad hoc routing security deployed with the help of infrastructure has a fundamental impact on ad hoc hosts in term of Internet access, integrity, and authentication. Both analysis and simulation results demonstrate the effectiveness of the proposed security protocol. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
A mobile ad hoc network (MANET) is a self‐organized and adaptive wireless network formed by dynamically gathering mobile nodes. Since the topology of the network is constantly changing, the issue of routing packets and energy conservation become challenging tasks. In this paper, we propose a cross‐layer design that jointly considers routing and topology control taking mobility and interference into account for MANETs. We called the proposed protocol as Mobility‐aware Routing and Interference‐aware Topology control (MRIT) protocol. The main objective of the proposed protocol is to increase the network lifetime, reduce energy consumption, and find stable end‐to‐end routes for MANETs. We evaluate the performance of the proposed protocol by comprehensively simulating a set of random MANET environments. The results show that the proposed protocol reduces energy consumption rate, end‐to‐end delay, interference while preserving throughput and network connectivity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Mobile ad hoc networks are recognized by their abilities to form, sustain, and deform networks on‐the‐fly without the need for any pre‐established and fixed infrastructures. This wireless multi‐hop technology requires adaptive networking protocols with low control overhead and low power consumption to operate efficiently. Existing research so far are mainly concerned with unicast routing for ad hoc mobile networks. There is a growing interest in supporting multicast communication in an ad hoc mobile environment. In this paper, the associativity‐based ad hoc multicast (ABAM) routing protocol is proposed. The concept of association stability is utilized during multicast tree discovery, selection, and reconfiguration. This allows routes that are long‐lived to be selected, thereby reducing the frequency of route reconstructions. ABAM employs a localized route reconstruction strategy in response to migrations by source, receiver, and tree nodes. It can repair an affected subtree via a single route reconstruction operation. ABAM is robust since the repair can be triggered by a node in the tree or by the migrated node itself. ABAM is also capable of handling multicast group dynamics when mobile hosts decide to join and leave an existing multicast group. Our simulation results reveal that under different mobility scenarios and multicast group size, ABAM has low communication overhead and yields better throughput performance. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

11.
Mobile ad hoc networks (MANETs) are independent networks, where mobile nodes communicate with other nodes through wireless links by multihop transmission. Security is still an issue to be fixed in MANETs. Hence, a routing protocol named encrypted trust‐based dolphin glowworm optimization (DGO) (E‐TDGO) is designed using Advanced Encryption Standard‐128 (AES‐128) and trust‐based optimization model for secure routing in MANET. The proposed E‐TDGO protocol includes three phases, namely, k‐path discovery, optimal path selection, and communication. At first, k paths are discovered based on the distance and the trust level of the nodes. From the k paths discovered, the optimal path is selected using a novel algorithm, DGO, which is developed by combining glowworm swarm optimization (GSO) algorithm and dolphin echolocation algorithm (DEA). Once the optimal path is selected, communication begins in the network such that E‐TDGO protocol ensures security. The routing messages are encrypted using AES‐128 with shared code and key to offer security. The experimental results show that the proposed E‐TDGO could attain throughput of 0.11, delay of 0.01 second, packet drop of 0.44, and detection rate of 0.99, at the maximum number of rounds considered in the network of 75 nodes with attack consideration.  相似文献   

12.
Mobile ad hoc networks (MANETs) are characterized by multiple entities, a frequently changing network topology and the need for efficient dynamic routing protocols. In MANETs, nodes are usually powered by batteries. Power control is tightly coupled with both the physical and medium access layers (MACs). However, if we increase the transmission power, at the same time we increase the interference to other nodes which diminish the transport capacity of wireless systems. Thus, the routing protocols based on hop count metric suffer from performance degradation when they operate over MANET. Routing in ad hoc wireless networks is not only a problem of finding a route with shortest length, but it is also a problem of finding a stable and good quality communication route in order to avoid any unnecessary packet loss. Cross-layer design of ad hoc wireless networks has been receiving increasing attention recently. Part of these researches suggests that routing should take into account physical layer characteristics. The goal of this paper is to improve the routing reliability in MANET and to reduce power consumption through cross-layer approach among physical, MAC and network layers. The proposed cross-layer approach is based on signal to interference plus noise ratio (SINR) and received signal strength indication (RSSI) coming from the physical layer. This solution performs in one hand the ad hoc on-demand distance vector routing protocol by choosing reliable routes with less interferences using SINR metric and in another hand; it permits to reduce the power transmission when sending the data packets by using RSSI metric.  相似文献   

13.
Mobile ad hoc networks (MANETs) are characterized by random, multi‐hop topologies that do not have a centralized coordinating entity or a fixed infrastructure that may change rapidly over time. In addition, mobile nodes operate with portable and finite power sources. In this work, we propose an energy‐efficient routing protocol for MANETs to minimize energy consumption and increase the network's consistency. Traditional works mainly focused on the shortest path‐based schemes to minimize energy, which might result into network failure because some nodes might exhaust fast as they are used repetitively, while some other nodes might not be used at all. This can lead to energy imbalance and to network life reduction. We propose an energy‐efficient ad hoc on‐demand routing protocol that balances energy load among nodes so that a minimum energy level is maintained among nodes and the network life increases. We focused on increasing the network longevity by distributing energy consumption in the network. We also compared the simulation results with a popular existing on‐demand routing protocol in this area, AODV, to establish the superiority of our approach. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
A novel scheme is presented to integrate mobile ad hoc networks (MANETs) with the lnternet and support mobility across wireless local area networks (WLANs) and MANETs. The mobile nodes, connected as a MANET, employ the optimize d link state routing (OLSR) protocol for routing within the MANET. Mobility management across WLANs and MANETs is achieved through the hierarchical mobile IPv6 (HMIPv6) protocol. The performance is evaluated on a HMIPv6 based test-bed composed of WLANs and MANETs. The efficiency gain obtained from using HMIPv6 in such a hybrid network is investigated. The investigation result shows that the use of HMIPv6 can achieve up to 27% gain on reducing the handoff latency when a mobile roams within a domain. Concerning the reduction of the signaling load on the lnternet, the use of HMIPv6 can achieve at least a 54% gain and converges to 69%.  相似文献   

15.
PACMAN: passive autoconfiguration for mobile ad hoc networks   总被引:4,自引:0,他引:4  
Mobile ad hoc networks (MANETs) enable the communication between mobile nodes via multihop wireless routes without depending on a communication infrastructure. In contrast to infrastructure-based networks, MANET's support autonomous and spontaneous networking and, thus, should be capable of self-organization and -configuration. This paper presents passive autoconfiguration for mobile ad hoc network (PACMAN), a novel approach for the efficient distributed address autoconfiguration of mobile ad hoc networks. Special features of PACMAN are the support for frequent network partitioning and merging, and very low protocol overhead. This is accomplished by using cross-layer information derived from ongoing routing protocol traffic, e.g., address conflicts are detected in a passive manner based on anomalies in routing protocol traffic. Furthermore, PACMAN assigns Internet protocol (IP) addresses in a way that enables their compression, which can significantly reduce the routing protocol overhead. The performance of PACMAN is analyzed in detail based on various simulation results.  相似文献   

16.
Many protocols, services, and electrical devices with built-in sensors have been developed in response to the rapid expansion of the Internet of Things. Mobile ad hoc networks (MANETs) consist of a collection of autonomous mobile nodes that can form an ad hoc network in the absence of any pre-existing infrastructure. System performance may suffer due to the changeable topology of MANETs. Since most mobile hosts operate on limited battery power, energy consumption poses the biggest challenge for MANETs. Both network lifetime and throughput improve when energy usage is reduced. However, existing approaches perform poorly in terms of energy efficiency. Scalability becomes a significant issue in large-scale networks as they grow, leading to overhead associated with routing updates and maintenance that can become unmanageable. This article employs a MANET routing protocol combined with an energy conservation strategy. The clustering hierarchy is used in MANETs to maximize the network's lifespan, considering its limited energy resources. In the MANET communication process, the cluster head (CH) is selected using Fire Hawk Optimization (FHO). When choosing nodes to act as a cluster for an extended period, CH election factors in connectivity, mobility, and remaining energy. This process is achieved using an optimized version of the Ad hoc On-Demand Distance Vector (AODV) routing protocol, utilizing Improved Chicken Swarm Optimization (ICSO). In comparison to existing protocols and optimization techniques, the proposed method offers an extended network lifespan ranging from 90 to 160 h and reduced energy consumption of 80 to 110 J, as indicated by the implementation results.  相似文献   

17.
Mobile ad hoc networks (MANETs) are dynamic wireless networks that have no fixed infrastructures and do not require predefined configurations. In this infrastructure-less paradigm, nodes in addition of being hosts, they also act as relays and forward data packets for other nodes in the network. Due to limited resources in MANETs such as bandwidth and power, the performance of the routing protocol plays a significant role. A routing protocol in MATET should not introduce excessive control messages to the network in order to save network bandwidth and nodes power. In this paper, we propose a probabilistic approach based on Bayesian inference to enable efficient routing in MANETs. Nodes in the proposed approach utilize the broadcast nature of the wireless channel to observe the network topology by overhearing wireless transmissions at neighboring nodes in a distributed manner, and learn from these observations when taking packet forwarding decision on the IP network layer. Our simulation results show that our routing approach reduces the number of control message (routing overhead) by a ratio up to 20 % when the network size is 60 nodes, while maintaining similar average route establishment delay as compared to the ad-hoc on demand routing protocol.  相似文献   

18.
Recently, wireless networks have become one of the major development trends in computer network technology. Because there is no more need of the wired transmission medium, applications have thus diversified. One such growing field of wireless networks is the mobile ad‐hoc network (MANET). A MANET consists of mobile hosts (such as portable laptops, vehicles, etc.), and no fixed infrastructure is required. MANETs provide ease of self‐configuration and can extend coverage at a low cost. Numerous applications have therefore been proposed under this network environment for daily life use. Because MANETs nodes are capable of moving, MANET network topology changes frequently. Thus, the traditional routing protocols fail to fit such an environment. In this paper, we propose an efficient routing protocol for MANETs, which integrates the mathematical model of profit optimization (the Kelly formula) from the field of economics to cope with the routing problem caused by node mobility. Some numerical simulations have been conducted to evaluate the performance of the proposed method using the network simulator NS‐2. The results show that our proposed method outperforms conventional routing protocols in packet delivery ratio comparisons; and the average end‐to‐end delays are within a tolerable range. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
Mobile ad hoc networks (MANETs) are becoming an emerging technology that offer several advantages to users in terms of cost and ease of use. A MANET is a collection of mobile nodes connected by wireless links that form a temporary network topology that operates without a base station and centralized administration. Routing is a method through which information is forwarded from a transmitter to a specific recipient. Routing is a strategy that guarantees, at any time, the connection between any two nodes in a network. In this work, we propose a novel routing protocol inspired by the cuckoo search method. Our routing protocol is implemented using Network simulator 2. We chose Random WayPoint model as our mobility model. To validate our work, we opted for the comparison with the routing protocol ad hoc on-demand distance vector, destination sequence distance vector and the bio-inspired routing protocol AntHocNet in terms of the quality of service parameters: packet delivery ratio and end-to-end delay (E2ED).  相似文献   

20.
Intelligent Handoff for Mobile Wireless Internet   总被引:6,自引:0,他引:6  
This paper presents an intelligent mobility management scheme for Mobile Wireless InterNet – MWIN. MWIN is a wireless service networks wherein its core network consisting of Internet routers and its access network can be built from any Internet-capable radio network. Two major standards are currently available for MWIN, i.e., the mobile IP and wireless LAN. Mobile IP solves address mobility problem with the Internet protocol while wireless LAN provides a wireless Internet access in the local area. However, both schemes solve problems independently at different layers, thereby some additional problems occur, e.g., delayed handoff, packet loss, and inefficient routing. This paper identifies these new problems and performs analyses and some real measurements on the handoff within MWIN. Then, a new handoff architecture that extends the features of both mobile IP and wireless LAN handoff mechanism was proposed. This new architecture consists of mobile IP extensions and a modified wireless LAN handoff algorithm. The effect of this enhancement provides a linkage between different layers for preventing packet loss and reducing handoff latency. Finally, some optimization issues regarding network planning and routing are addressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号