首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of rainbow trout cold storage on the quality of offal left after fish processing to fillets with skin were determined. The intact farmed rainbow trout were kept at 2 °C in ice for 0, 4, 7, and 14 days of storage. The offal was, immediately after processing, frozen at ?20 °C and analysed after a month‐long frozen storage; fillets (non‐frozen) were analysed as well. Non‐protein nitrogen, volatile bases, trimethylamine, lipid oxidation (peroxide value, anisidine value, UV‐VIS spectra, and fluorescence) and fatty acid composition were determined. The offal consists in 15% of protein and in about 20% of chloroform/methanol‐extractable lipids, with n‐3 polyunsaturated fatty acids (n‐3 PUFA) accounting for 20.37 ± 1.25% of the fatty acids. The fish storage duration was found to exert a significant (p = 0.05) effect on the changes in lipids and nitrogen compounds. No losses of long‐chain n‐3 PUFA in the offal were detected during the 2 wk of storage in ice plus 1 month at ?20 °C. The rainbow trout offal is a valuable – rich and stable – source of n‐3 PUFA.  相似文献   

2.
Various plant seeds have received little attention in fatty acid research. Seeds from 30 species mainly of Boraginaceae and Primulaceae were analysed in order to identify potential new sources of the n‐3 PUFA α‐linolenic acid (ALA) and stearidonic acid (SDA) and of the n‐6 PUFA γ‐linolenic acid (GLA). The fatty acid distribution differed enormously between genera of the same family. Echium species (Boraginaceae) contained the highest amount of total n‐3 PUFA (47.1%), predominantly ALA (36.6%) and SDA (10.5%) combined with high GLA (10.2%). Further species of Boraginaceae rich in both SDA and GLA were Omphalodes linifolia (8.4, 17.2%, resp.), Cerinthe minor (7.5, 9.9%, resp.) and Buglossoides purpureocaerulea (6.1, 16.6%, resp.). Alkanna species belonging to Boraginaceae had comparable amounts of ALA (37.3%) and GLA (11.4%) like Echium but lower SDA contents (3.7%). Different genera of Primulaceae (Dodecatheon and Primula) had varying ALA (14.8, 28.8%, resp.) and GLA portions (4.1, 1.5%, resp.), but similar amounts of SDA (4.9, 4.5%, resp.). Cannabis sativa cultivars (Cannabaceae) were rich in linoleic acid (57.1%), but poor in SDA and GLA (0.8, 2.7%, resp.). In conclusion, several of the presented plant seeds contain considerable amounts of n‐3 PUFA and GLA, which could be relevant for nutritional purposes due to their biological function as precursors for eicosanoid synthesis. Practical applications: N‐3 PUFA are important for human health and nutrition. Unfortunately, due to the increasing world population, overfishing of the seas and generally low amounts of n‐3 PUFA in major oil crops, there is a demand for new sources of n‐3 PUFA. One approach involves searching for potential vegetable sources of n‐3 PUFA; especially those rich in ALA and SDA. The conversion of ALA to SDA in humans is dependent on the rate‐limiting Δ6‐desaturation. Plant‐derived SDA is therefore a promising precursor regarding the endogenous synthesis of n‐3 long‐chain PUFA in humans. The present study shows that, in addition to seed oil of Echium, other species of Boraginaceae (Cerinthe, Omphalodes, Lithospermum, Buglossoides) and Primulaceae (Dodecatheon, Primula), generally high in n‐3 PUFA (30–50%), contain considerable amounts of SDA (5–10%). Therefore, these seed oils could be important for nutrition.  相似文献   

3.
4.
The lipase/acyltransferase from Candida parapsilosis is an original biocatalyst that preferentially catalyses alcoholysis over hydrolysis in biphasic aqueous/organic media. In this study, the performance of the immobilised biocatalyst in the interesterification in solvent‐free media of fat blends rich in n‐3 polyunsaturated fatty acids (n‐3 PUFA) was investigated. The interesterification activity of this biocatalyst at a water activity (aw) of 0.97 was similar to that of commercial immobilised lipases at aw values lower than 0.5. Thus, the biocatalyst was further used at an aw of 0.97. Response surface modelling of interesterification was carried out as a function of medium formulation, reaction temperature (55–75 °C) and time (30–120 min). Reaction media were blends of palm stearin (PS), palm kernel oil and triacylglycerols (TAG) rich in n‐3 PUFA (“EPAX 4510TG”; EPAX AS, Norway). The best results in terms of decrease in solid fat content were observed for longer reaction time (>80 min), lower temperature (55–65 °C), higher “EPAX 4510TG” content and lower PS concentration. Reactions at higher temperature led to final interesterified fat blends with lower free fatty acid contents. TAG with high equivalent carbon number (ECN) were consumed while acylglycerols of lower ECN were produced.  相似文献   

5.
Transesterification of fat blends rich in n‐3 polyunsaturated fatty acids (n‐3 PUFA), catalysed by a commercial immobilised thermostable lipase from Thermomyces lanuginosa, was carried out batch‐wise. Experiments were performed, following central composite rotatable designs (CCRDs) as a function of reaction time, temperature and media formulation. Mixtures of palm stearin, palm kernel oil and a commercial concentrate of triacylglycerols rich in n‐3 PUFA (“EPAX 2050TG” in CCRD‐1 and “EPAX 4510TG” in CCRD‐2) were used. The time‐course of transesterification was indirectly followed by the solid fat content (SFC) values of the blend at 10 °C, 20 °C, 30 °C and 35 °C. A decrease in all SFC values of the blends at 10 °C, 20 °C, 30 °C and 35°C was observed upon transesterification. The SFC10 °C and SFC20 °C of transesterified blends varied between 18 and 48 and SFC35 °C between 6 and 24. These values fulfil the technological requirements for the production of margarines. Under our conditions, lipid oxidation may be neglected. However, the accumulation up to 8.3% free fatty acids in reaction media is a problem to overcome. The development of response surface models, describing both the final SFC value and the SFC decrease, will allow predicting results for novel proportions of fats and oils and/or a novel combination time‐temperature.  相似文献   

6.
There is growing scientific evidence that consumption of n‐3 very long‐chain polyunsaturated fatty acids (n‐3 VLC‐PUFA) helps in brain and eye development, and protects against a range of common degenerative diseases. This has provided the impetus to the scientists to develop new and renewable sources for these important fatty acids so that the food industry is able to produce and market products fortified with n‐3 VLC‐PUFA. The bioactive efficacy and stability of food products containing n‐3 VLC‐PUFA may be determined not only by the amount of n‐3 VLC‐PUFA present but also by the positional distribution of these acids within the triacylglycerol (TAG) molecules (regiopurity). Studies of the effects of positional distribution on the functionality of n‐3 VLC‐PUFA containing oils have been hampered by a general lack of pure TAG regioisomers for experimentation. This paper reviews methods that have been used for the synthesis of TAG regioisomers containing n‐3 VLC‐PUFA, with special reference to those in which one n‐3 VLC‐PUFA occurs in combination with two long‐chain saturated acids.  相似文献   

7.
It has been demonstrated that the amount and type of dietary fat are factors involved in the risk of arteriosclerosis and coronary or cerebral artery disease through lipid metabolism. In this study, we investigated the effects of phospholipids (PLs) containing n‐3PUFAs on lipid metabolism in rats. PLs containing n‐3PUFAs were prepared from squid (Todarodes pacificus) mantle muscle. Groups of male Wistar rats were fed AIN93G diet containing soybean oil (SO, 7%), fish oil (1.2%) + SO (5.8%), soybean PLs (1.8%) + SO (5.2%), or PLs containing n‐3PUFAs (1.8%) + SO (5.2%). The following indicators were assayed as indexes of lipid metabolism: TAG and cholesterol in serum and liver, fecal cholesterol, bile‐acid excretion, and liver mRNA expression levels of genes encoding proteins involved in cholesterol homeostasis. Serum and liver TAG contents decreased significantly in the group fed PLs containing n‐3PUFAs as compared to other groups, accompanied by a significant decline in the expression level of sterol regulatory element binding protein‐1c. The decrease in cholesterol content in the group fed PLs containing n‐3PUFAs was due to the increase in fecal cholesterol excretion and the increase of mRNA expression levels of ATP‐binding cassette (ABC) G5 and ABCG8 in liver. Practical applications : PLs containing n‐3PUFAs decreased serum and liver TAG contents compared with that induced by soybean PLs. Further, PLs containing n‐3PUFAs can induce a reduction in serum and liver cholesterol concentrations as well as the triglyceride‐reducing effect of conventional n‐3PUFAs containing TAG. In other words, dietary n‐3PUFAs contained in PLs can prevent life‐style diseases such as hyperlipidemia, arteriosclerosis and coronary, or cerebral artery disease more effectively than TAG containing n‐3PUFAs. Therefore, it is expected that the risk of lifestyle diseases would be decreased if PL containing n‐3PUFAs can be supplied routinely. In this study, PLs containing n‐3PUFAs were prepared from squid mantle muscle. On an industrial scale, such PLs can be produced from various unused resources and waste materials of fisheries. We conclude that highly functional foods could be developed based on the findings of this study, and would be available for health promotion worldwide.  相似文献   

8.
The aim of the present study was to systematically investigate the possibilities of stabilizing a bulk oil rich in long‐chain polyunsaturated fatty acids under ambient conditions. Combinations of different antioxidants (α‐, γ‐ and/or δ‐tocopherol, rosmarinic acid and rosemary extract rich in carnosic acid) as well as lecithin and citric acid were systematically investigated. Efficient stabilization was achieved by choosing a combination of tocopherols rich in γ‐ or δ‐tocopherol and low in α‐tocopherol, by including tocopherol‐sparing synergists like ascorbyl palmitate and carnosic acid from rosemary extract and metal‐chelating agents. For carnosic acid, a concentration of 400 mg/kg oil provides sufficient protection; the concentration of the metal chelator should be adapted to the concentration of metal ions present in the oil. As an alternative ingredient with metal‐chelating and tocopherol‐sparing activity, lecithin may be included in the formulation, but its poor solubility in bulk oils limits its use.  相似文献   

9.
The influence of dietary Tetracarpidium conophorum (African Walnut) seed meal (TCSM) on fatty acids, productivity parameters, and physicochemical properties of breast and thigh muscles in broiler chickens are assessed. A total of 180, 28‐d‐old Arbor acre broiler chickens are randomly assigned to dietary treatments containing 0% (control), 2.5%, and 5% w/w TCSM, fed for 28 d, and euthanized. Dietary TCSM reduces (p < 0.05) feed intake, body weight gain (BWG), carcass weight, and abdominal fat. Diet does not affect feed efficiency and hematological parameters. The control birds have higher (p < 0.05) serum total cholesterol and triglycerides than do the supplemented birds. Diet has no effect on pH, water holding capacity, carbonyl and malondialdehyde contents, and organoleptic properties of breast and thigh muscles. The 5% TCSM has higher redness in breast muscle than do other treatments. Dietary TCSM improves (p < 0.05) the concentration of C18:3n‐3 (4.80–8.76% vs 1.56%), C20:5n‐3 (0.54–0.79% vs 0.39%), C22:5n‐3 (0.64–0.89% vs 0.18%), and C22:6n‐3 (0.75–0.97% vs 0.19%), and reduces (p <  0.05) the fat content (2.15–2.45% vs 3.15%) in breast and thigh muscles. Dietary TCSM enhances muscle n‐3 fatty acids without instigating oxidative deterioration, but reduces BWG in broiler chickens. Practical Application: Albeit that broiler meat is rich in polyunsaturated fatty acids (PUFA), its omega 6 (n‐6)/omega 3 (n‐3) is >4. Elevated n‐6/n‐3 could have adverse effect on human physiology thereby promoting the pathogenesis of certain diseases. This heightens the need to enhance the n‐3 PUFA content of broiler meat. Dietary TCSM induced up to a fourfold increase in n‐3 PUFA content of the breast and thigh muscles in broiler chickens. Moreover, dietary TCSM induced up to a tenfold decrease in the n‐6/n‐3 of the breast and thigh muscles in broiler chickens. This finding assumes great significance because the health concerns regarding dietary fat are the foremost factors responsible for the bad image suffered by meat. These results provide insights on the potential of TCSM to improve the nutritional quality without compromising the oxidative shelf life, organoleptic traits, and physicochemical properties of broiler meat.  相似文献   

10.
Long‐chain polyunsaturated fatty acids (LC‐PUFA) now have a proven role in human health and nutrition, including the n‐3 forms normally found in fish oils. Unfortunately, global fish stocks are now more than ever subject to over‐fishing and environmental pollution, indicating the need for an alternative source of fish oils. Recent efforts have focussed on the production of LC‐PUFA in transgenic plants to provide a sustainable and clean source of fish oils. The current progress in this area is considered, as well as the bottlenecks that remain to be overcome.  相似文献   

11.
12.
The splenocyte fatty acid profile and immune response of broiler chickens were investigated. One hundred and twenty day‐old broiler chicks were fed diets containing conjugated linoleic acid (CLA) (Diet I), sunflower oil (Diet II), flaxseed oil (Diet III) or fish oil (Diet IV). The total lipid content of the diets was 3.5%. Body weight and feed intake was higher (P <0.05) in Diet IV compared to Diets I, II and III. Birds fed Diet III and IV had a higher content of n‐3 fatty acids in splenocytes than those fed Diets I and II. Serum anti‐BSA immunoglobulin content was higher (P <0.05) in birds fed Diets III and IV, compared to those fed Diets I and II. Delayed type hypersensitivity response, measured as the wing web skin swelling reaction (thickness) to Mycobacterium butyricum injection (s.c.), increased (P <0.05) from 0.71 and 0.98 mm in Diets IV and III, respectively, to 1.19 and 1.41 mm in Diets I and II, respectively. The number of CD4+ and CD8+ blood lymphocytes and CD4+, CD8+ and IgM+ splenocytes did not differ (P >0.05) between treatment groups. N‐3 fatty acids increased production performances and antibody mediated responses, while n‐6 fatty acids and conjugated linoleic acid increased cell mediated responses in broiler birds.  相似文献   

13.
Seed oils from Acer species are a potential source of the nutraceutical fatty acids, nervonic acid (cis‐15‐tetracosenoic acid, NA), and γ‐linolenic acid (cis‐6,9,12‐octadecatrienoic acid, GLA). To further characterize the genus, seed fatty acid content and composition were determined for 20 species of Acer. Fatty acid content ranged from 8.2% for Acer macrophyllum to over 36% for A. mono and A. negundo. The presence of very‐long‐chain fatty acids (VLCFA), with chain length of 20‐carbons or greater, and GLA were characteristic features of the seed oils. In all species, erucic acid (cis‐13‐docosenoic acid, EA) was the predominant VLCFA with the highest level of NA being only 8.6% in A. olivianum. Regioselective lipase digestion demonstrated that VLCFA are largely absent from the sn‐2 position of seed triacylglycerol, whereas GLA is primarily located at this position. Five Acer species contained low levels (<2%) of cis‐12‐octadecenoic acid and cis‐14‐eicosenoic acid, uncommon n‐6 fatty acids not previously reported from Acer.  相似文献   

14.
The objective of the experiment with cattle was to produce high quality beef under different feeding conditions and to increase the concentration of essential fatty acids in muscle. In total 10 German Simmental (GS) bulls and 9 German Holstein (GH) steers were kept either on pasture (grass feeding) or in stable (concentrate feeding). Despite biohydrogenation in the rumen, linolenic acid (C18:3n‐3) contained in grass was absorbed and deposited into the lipids of muscle. This led to a significantly (p ≤ 0.05) higher content of n‐3 fatty acids in the muscle lipids of grazing cattle. The relative amount of total n‐3 fatty acids increased from 1.4 g/100 g fatty acid methyl ester (%FAME) in the intensively fed Simmental bulls to 5.5 %FAME in grass fed cattle. The n‐6/n‐3 ratio of pasture grazing GS bulls was 1.3 in contrast to 13.7 of the animals kept in the byre. The total n‐3 fatty acid concentration in beef muscle increased from 24.6 mg (concentrate) to 108.6 mg/100 g wet weight (grazing). In GH steers the total n‐3 fatty acid concentration was significantly (p ≤ 0.05) increased up to 86.3 mg/100 g wet weight in pasture grazing steers compared to 28.8 mg/100 g wet weight in animals fed the concentrate. The relative content (%FAME) of CLAcis‐9, trans‐11 (0.6 vs 0.56 %FAME in GS; 0.55 vs 0.52 %FAME in GH) in muscle was not significantly increased by grazing on pasture in comparison to concentrate feeding neither in GS bulls nor in GH steers, respectively.  相似文献   

15.
16.
The present study assessed the role of dietary unsaturated fatty acids in maternal dyslipidemia‐induced DNA methylation and histone acetylation in placenta and fetal liver and accumulation of lipids in the fetal liver. Weanling female Wistar rats were fed control and experimental diets for 2 months, mated, and continued on their diets during pregnancy. At gestation days of 18–20, rats were euthanized to isolate placenta and fetal liver. DNA methylation, DNA methyl transferase‐1 (DNMT1) activity, acetylation of histones (H2A and H2B), and histone acyl transferase (HAT) activity were evaluated in placenta and fetal liver. Fetal liver lipid accumulation and activation of peroxisome proliferator‐activated receptor‐α (PPAR‐α) were assessed. Maternal dyslipidemia caused significant epigenetic changes in placenta and fetal liver. In the placenta, (1) global DNA methylation increased by 37% and DNMT1 activity by 86%, (2) acetylated H2A and H2B levels decreased by 46% and 24% respectively, and (3) HAT activity decreased by 39%. In fetal liver, (1) global DNA methylation increased by 52% and DNMT1 activity by 78%, (2) acetylated H2A and H2B levels decreased by 28% and 26% respectively, and (3) HAT activity decreased by 37%. Maternal dyslipidemia caused a 4.75‐fold increase in fetal liver triacylglycerol accumulation with a 78% decrease in DNA‐binding ability of PPAR‐α. Incorporation of dietary unsaturated fatty acids in the maternal high‐fat diet significantly (p < 0.05) modulated dyslipidemia‐induced effects in placenta and fetal liver. Eicosapentaenoic acid (EPA, 20:5n‐3) + docosahexaenoic acid (DHA, 22:6n‐3) exhibited a profound effect followed by alpha‐linolenic acid (ALA, 18:3n‐3) than linoleic acid (LNA, 18:2n‐6) in modulating the epigenetic parameters in placenta and fetal liver.  相似文献   

17.
Lipid and fatty acid levels in the edible flesh of 17 freshwater fish from Brazil’s southern region were determined. Analyses of fatty acid methyl esters were performed by gas chromatography. Palmitic acid (C16:0) was the predominant saturated fatty acid, accounting for 50–70% of total saturated acids. Oleic acid (C18:1θ9) was the most abundant monounsaturated fatty acid. Linoleic acid (C18:2θ6), linolenic acid (C18:3θ3), and docosahexaenoic acid (C22:6θ3) were the predominant polyunsaturated fatty acids (PUFA). The data revealed that species such as truta, barbado, and corvina were good sources of eicosapentaenoic acid (C20:5θ3) and docosahexaenoic acid (C22:6θ3), and that most freshwater fish examined were good sources of PUFA θ3.  相似文献   

18.
Long‐chain polyunsaturated fatty acids (LC‐PUFA) of the n‐3 series, particularly eicosapentaenoic (EPA) and docosahexaenoic (DHA) acid, have specific activities especially in the functionality of the central nervous system. Due to the occurrence of numerous methylene‐interrupted ethylenic double bonds, these fatty acids are very sensitive to air (oxygen) and temperature. Non‐volatile degradation products, which include polymers, cyclic fatty acid monomers (CFAM) and geometrical isomers of EPA and DHA, were evaluated in fish oil samples obtained by deodorization under vacuum of semi‐refined fish oil at 180, 220 and 250 °C. Polymers are the major degradation products generated at high deodorization temperatures, with 19.5% oligomers being formed in oil deodorized at 250 °C. A significant amount of CFAM was produced during deodorization at temperatures above or equal to 220 °C. In fact, 23.9 and 66.3 mg/g of C20 and C22 CFAM were found in samples deodorized at 220 and 250 °C, respectively. Only minor changes were observed in the EPA and DHA trans isomer content and composition after deodorization at 180 °C. At this temperature, the formation of polar compounds and CFAM was also low. However, the oil deodorized at 220 and 250 °C contained 4.2% and 7.6% geometrical isomers, respectively. Even after a deodorization at 250 °C, the majority of geometrical isomers were mono‐ and di‐trans. These results indicate that deodorization of fish oils should be conducted at a maximal temperature of 180 °C. This temperature seems to be lower than the activation energy required for polymerization (intra and inter) and geometrical isomerization.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号