首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cross‐linked chitosans synthesized by the inverse emulsion cross‐link method were used to investigate adsorption of three metal ions [Cd(II), Pb(II), and Ag(I)] in an aqueous solution. The chitosan microsphere, was characterized by FTIR and SEM, and adsorption of Cd(II), Pb(II), and Ag(I) ions onto a cross‐linked chitosan was examined through analysis of pH, agitation time, temperature, and initial concentration of the metal. The order of adsorption capacity for the three metal ions was Cd2+ > Pb2+ > Ag+. This method showed that adsorption of the three metal ions in an aqueous solution followed the monolayer coverage of the adsorbents through physical adsorption phenomena and coordination because the amino (? NH2) and/or hydroxy (? OH) groups on chitosan chains serve as coordination sites. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

2.
《分离科学与技术》2012,47(14):2132-2139
In this study, the cross-linked chitosan-polyphosphate-epichlorohydrin (CCPE) beads were prepared by cross-linking chitosan with both polyphosphate and epichlorohydrin and used as bioadsorbent for the removal of Pb(II) and Cu(II) ions from aqueous solutions. The effects of the dosage of CCPE beads, solution pH, initial metal ion concentration, contact time, and temperature were investigated. Then, three important factors were selected to optimize the removal processes by the orthogonal test. The results show that CCPE beads can effectively remove the Pb(II) and Cu(II) ions from aqueous solutions, and the maximum percentage removals for Pb(II) and Cu(II) ions are 99.7% and 91.2%, respectively. The data show also that the removal processes for both Pb(II) and Cu(II) ions fit best the pseudo-second order kinetic model. Moreover, the decrease of the adsorption ability of CCPE beads is less than 10% after reuse for 9 times, which suggests that CCPE beads have good reusability.  相似文献   

3.
《分离科学与技术》2012,47(18):2843-2851
A novel adsorbent, chufa corm peels (CCP), is used for removing Cu(II), Cr(III), and Cr(VI) from aqueous solutions. The adsorption ability and characteristics of the CCP are thoroughly investigated. The adsorption capability for three heavy metal ions is in the order of Cu(II) > Cr(III) > Cr(VI). The morphology and elemental distribution on the biomass of CCP were evaluated by scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). Fourier-transform infrared spectroscopy (FTIR) analysis revealed that oxygen-containing functional groups, especially carboxylic and hydroxyl groups were responsible for chemical coordination between ionizable functional groups and metal ions. The adsorption features were evaluated based on the batch biosorption experiment. The results showed that the adsorption well meets the Freundlich adsorption isotherm models and pseudo-second-order kinetics model. In summary, this work demonstrated that CCP is an attractive, efficient, and low-cost adsorbent biomaterial that can be used for the removal of heavy metals from environmental contaminations.  相似文献   

4.
5.
BACKGROUND: Environmental pollution and its abatement have attracted much attention for some time. The problem of removing pollutants from water and wastewater has grown along with rapid industrialization. Formaldehyde polymerized banana stem (FPBS) having sulphonic acid groups was investigated as an adsorbent for cadmium(II) removal from aqueous solutions. RESULTS: The outstanding function of the adsorbent was demonstrated at pH 9.0. The adsorption efficiency of FPBS was compared with BS and results showed that FPBS was two times more effective than BS for cadmium(II) removal. Maximum recoveries of 97.3 and 90.3% for 10 and 25 mg L?1 initial concentrations were obtained at pH 9.0. Kinetic studies revealed that adsorption occurred in two stages: external mass transport in the first stage and intra‐particular diffusion in the second stage. Adsorption was found to be rapid and equilibrium was attained in 60 min. Among the various desorbing agents tested, 99.2% cadmium recovery was achieved with 0.1 mol L?1 HCl. CONCLUSIONS: The uptake efficiency of cadmium(II) by FPBS was determined. Repeated adsorption‐desorption study showed that FPBS can be used as an adsorbent for the removal and recovery of Cd(II) from aqueous solutions. Copyright © 2012 Society of Chemical Industry  相似文献   

6.
In this study, chitin (Ch) was made composite with polyaniline (PANI) and used for the removal of Pb(II) and Cd(II) ions from aqueous solution. Characterization techniques such as Fourier transform infrared spectroscopy, scanning electron microscope, energy-dispersive X-ray analyser and X-ray diffraction were employed to characterize the prepared PANI/Ch composite. Influence of various equilibrium parameters on the adsorption of Pb(II) and Cd(II) ions onto PANI/Ch composite was investigated. The adsorption process followed the Freundlich isotherm model, and the calculated maximum monolayer sorption capacity of PANI/Ch composite for Pb(II) and Cd(II) ions is 7.03 and 6.05 mg g?1 at 303 K. The kinetic data were well described by the pseudo-second-order model.  相似文献   

7.
Functionalised SBA‐15 mesoporous silica with polyamidoamine groups (PAMAM‐SBA‐15) was successfully prepared with the structure characterised by X‐ray diffraction, nitrogen adsorption–desorption, Fourier transform infrared spectra and thermogravimetric analysis. PAMAM‐SBA‐15 was applied as adsorbent for Cu(II), Pb(II) and Cd(II) ions removal from aqueous solution. The effects of the solution pH, adsorbent dosage and metal ion concentration were studied under the batch mode. The Langmuir model was fitted favourably to the experimental data. The maximum sorptive capacities were determined to be 1.74 mmol g?1 for Cu(II), 1.16 mmol g?1 for Pb(II) and 0.97 mmol g?1 for Cd(II). The overall sorption process was fast and its kinetics was fitted well to a pseudo‐first‐order kinetic model. The mean free energy of sorption, calculated from the Dubinin–Radushkevich isotherm, indicated that the sorption of lead and copper, with E > 16 kJ mol?1, followed the sorption mechanism by particle diffusion. The adsorbent could be regenerated three times without significant varying its sorption capacity. A series of column tests were performed to determine the breakthrough curves with varying bed heights and flow rates. The breakthrough data gave a good fit to the Thomas model. Maximum sorption capacity of 1.6, 1.3 and 1.0 mmol g?1 were found for Cu(II), Pb(II) and Cd(II), respectively, at flow rate of 0.4 mL min?1 and bed height of 8 cm, which corresponds to 83%, 75% and 73% of metallic ion removal, respectively, which very close to the value determined in the batch process. Bed depth service time model could describe the breakthrough data from the column experiments properly. © 2012 Canadian Society for Chemical Engineering  相似文献   

8.
Equilibrium, kinetic and thermodynamic aspects of the adsorption of copper ions from an aqueous solution using linear alkylbenzene sulfonate (LABORATORIES) modified bentonite (organo-bentonite) are reported. Modification of bentonite was performed via microwave heating with a concentration of LABORATORIES surfactant equivalent to 1.5 times that of the cation exchange capacity (CEC) of the raw bentonite. Experimental parameters affecting the adsorption process such as pH, contact time and temperature were studied. Several adsorption equations (e.g., Langmuir, Freundlich, Sips and Toth) with temperature dependency were used to correlate the equilibrium data. These models were evaluated based on the theoretical justifications of each isotherm parameter. The Sips model had the best fit for the adsorption of copper ions onto organo-bentonite. For the kinetic data, the pseudo-second order model was superior to the pseudo-first order model. Thermodynamically, the adsorption of copper ions occurs via chemisorption and the process is endothermic (ΔH0>0), irreversible (ΔS0>0) and nonspontaneous (ΔG0>0).  相似文献   

9.
To further improve the adsorption capacity of chitosan (CTS), a series of novel chitosan/organo‐montmorillonite nanocomposites (CTS/OMMT) were synthesized and the adsorption abilities for Congo red (CR) investigated in this study. The nanocomposites were characterized by Fourier transform infrared spectroscopy (FTIR), X‐ray diffraction analysis (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and the results indicated that an exfoliated nanostructure was formed in CTS/OMMT nanocomposites. Compared with the adsorption capacity of OMMT (192.4 mg g?1), CTS/OMMT with an amount of cetyltrimethylammonium bromide equal to 0.75 CEC of MMT and molar ratio of CTS to OMMT of 1:10 exhibited the higher adsorption capacity (290.8 mg g?1). The adsorption behaviours of OMMT and CTS/OMMT showed that the adsorption kinetics and isotherms were in good agreement with a pseudo‐second‐order equation and the Langmuir equation, respectively. The IR spectra revealed that a chemical interaction occurred between CTS/OMMT and CR. The adsorption capacity of CTS/OMMT nanocomposite was higher than that of other absorbents; this study suggested that the CTS/OMMT nanocomposite could be used as an adsorbent to remove CR dye from aqueous solution. Copyright © 2007 Society of Chemical Industry  相似文献   

10.
Magnetic polymethylmethacrylate (mPMMA) microbeads carrying ethylene diamine (EDA) were prepared for the removal of heavy metal ions (i.e., copper, lead, cadmium, and mercury) from aqueous solutions containing different amount of these ions (5–700 mg/L) and at different pH values (2.0–8.0). Adsorption of heavy metal ions on the unmodified mPMMA microbeads was very low (3.6 μmol/g for Cu(II), 4.2 μmol/g for Pb(II), 4.6 μmol/g for Cd(II), and 2.9 μmol/g for Hg(II)). EDA‐incorporation significantly increased the heavy metal adsorption (201 μmol/g for Cu(II), 186 μmol/g for Pb(II), 162 μmol/g for Cd(II), and 150 μmol/g for Hg(II)). Competitive adsorption capacities (in the case of adsorption from mixture) were determined to be 79.8 μmol/g for Cu(II), 58.7 μmol/g for Pb(II), 52.4 μmol/g for Cd(II), and 45.3 μmol/g for Hg(II). The observed affinity order in adsorption was found to be Cu(II) > Pb(II) > Cd(II) > Hg(II) for both under noncompetitive and competitive conditions. The adsorption of heavy metal ions increased with increasing pH and reached a plateau value at around pH 5.0. The optimal pH range for heavy‐metal removal was shown to be from 5.0 to 8.0. Desorption of heavy‐metal ions was achieved using 0.1 M HNO3. The maximum elution value was as high as 98%. These microbeads are suitable for repeated use for more than five adsorption‐desorption cycles without considerable loss of adsorption capacity. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 81–89, 2000  相似文献   

11.
A novel composite carbon adsorbent (GCA) has been prepared by immobilizing activated carbon and genipin‐crosslinked chitosan into calcium alginate gel beads via entrapment and applied to the removal of mercury (Hg2+) ions from aqueous solution (e.g., drinking water). Two bead sizes and two mixing ratios of components were obtained and characterized. Batch experiments were performed to study the uptake equilibrium and kinetics of Hg2+ ions by the GCA. The Hg2+ adsorption capacity of GCA was found to be dependent of pH and independent of size of the adsorbent. The Hg2+ adsorption rate of GCA increases with decreasing its bead size. However, both adsorption capacity and rate of GCA for Hg2+ increase with increasing its chitosan content. Otherwise, it was shown that the GCA has higher Hg2+ adsorption capacity and rate than activated carbon, which might be caused by the incorporation of chitosan into the GCA. The maximum Hg2+ adsorption capacity of GCA was found to be 576 mg/g, which is over seven times higher than that of activated carbon. Our results reveal the uniform distribution of activated carbon and chitosan within the alginate gel bead and that Hg2+ ions can diffuse inside the bead. It also demonstrated the feasibility of using this GCA for Hg2+ removal at low pH values. The Hg2+ absorbed beads of the GCA can be effectively regenerated and reused using H2SO4. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

12.
13.
《分离科学与技术》2012,47(18):2870-2881
ABSTRACT

The present work aims to prepare an ecofriendly and effective material for adsorption of heavy metals, especially iron and manganese from polluted water. Chitosan nanoparticles were prepared from the extracted chitosan of shrimp shells waste using a traditional ionic gelation method in presence of sodium tripolyphosphate as a cross-linker. To confirm the polymer structure and its characteristics, the prepared nanoparticles were characterized using FT-IR, X-Ray diffraction, TEM and SEM. Molecular weight, the degree of de-acetylation, ash content, particle size and zeta potential values were 3923 D, 75 %, 4 %, 331 nm and +38 mv, respectively. A batch equilibrium experiments were carried out to evaluate the chitosan nanoparticles as adsorbents of Fe (II) and Mn (II) ions from aqueous solutions. The removal efficiency and adsorption capacity were studied at different contact times, pH of the sorption medium, and initial metal ion concentration in the feed solution. The removal efficiency and maximum adsorption capacity of Fe (II) and Mn (II) were 99.8, 116.2 mg/g and 95.3%, 74.1mg/g, respectively. From the adsorption isotherm and kinetic studies, it was found that the Langmuir and the pseud-second order models, respectively, were more fitted in this study.  相似文献   

14.
15.
This article deals with removal of Pb(II) ions from aqueous media using sweet industry byproduct, that is, sweetmeat waste (SMW). The SEM images revealed highly heterogeneous sorbent surface. XRD and FTIR studies were done. The sorption equilibrium time was found 45 min only, and the sorption followed pseudo-second-order reaction model, indicating chemisorption as the rate-limiting step. Pb(II) removal followed Langmuir isotherm model best, and the maximum sorption capacity was 11.38 mg/g. The fixed bed column study was performed and analyzed using Logit, Bohart-Adams and Wolborska models. The sorption rate and capacity constants were 0.143(±0.017) L/mg.h and 39(±7) mg/L, respectively.  相似文献   

16.
The protonation constant of the NH2 function was determined by the method of Katchalsky and Spitnik and by the SUPERQUAD fitting procedure. Samples with higher concentrations of chitosan indicated aggregations of polymer chains, which led to a loss in the effective concentration of the ligand (L). It followed, as a result of potentiometric titrations, that an excess of L of microcrystalline chitosan (MCCh) with a deacetylation degree of 0.90 was a complexing agent toward the metal (M), which was Ni(II) or Mn(II). Species ML and ML2 were accepted by SUPERQUAD for both of the M's, where coordination occurred via the amino nitrogen. For Ni(II), however, the hydroxyl oxygen may also have been an electron‐pair donor at lower excesses of MCCh and, by that, made possible the formation of five‐membered chelate rings in the hydroxyl deprotonated MLH‐1 species. The evaluated formation constants were compared with the values known until now for monomeric D ‐glucosamine. Additional confirmation of the M–L interaction was determined by the spectrophotometric titration of a Ni(II)–MCCh solution. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 2572–2577, 2005  相似文献   

17.
The removal of copper ions from aqueous effluents by chitosan was studied in equilibrium and agitated batch contacting systems. The sorption capacities of chitosan for copper ions are 1.26 and 1.12 mmol g?1 at pH 3.5 and 4.5, respectively. The equilibrium experimental data were best correlated by the Langmuir equation. The kinetics of sorption were studied at an initial solution pH of 4.5 and a chitosan particle size of 355–500 µm. The kinetics were analyzed using four models: the pseudo‐first‐order, pseudo‐second‐order, modified second‐order and Elovich equations. The rate parameters for the four models were determined and the Elovich equation provided the best correlation of the experimental kinetic data. Copyright © 2003 Society of Chemical Industry  相似文献   

18.
A comprehensive feasibility study on the adsorption of Cd2+ ions by cassava starch–based superabsorbent polymers (CST‐SAPs) as the biosorbent was investigated as a function of adsorbent dosage, pH, initial concentration, contact time, and temperature. An orthogonal experiment and range analysis were applied to optimize the adsorption conditions. Adsorbent dosage and initial concentration were the most sensitive variables for adsorption capacity. The maximum adsorption value of Cd2+ ions was determined as 347.46 mg/g at pH 6.0, initial concentration of 200 mg/L, and contact temperature and time of 323 K and 6 h, respectively, with 0.1 g adsorbent dosage. The equilibrium data were well described by a Langmuir model, and the adsorption process was well fitted by pseudo‐second‐order kinetics. The Fourier transform infrared spectroscopy (FTIR) data confirmed that acrylic acid and acrylic amide grafted onto the cassava starch. The X‐ray diffraction and FTIR results for the Cd2+‐absorbed CST‐SAP (CST‐SAP‐Cd2+) samples showed that the CST‐SAP could effectively adsorb Cd2+ ions and that the characteristic groups were translocated by chelation. The scanning electron microscopy results for the CST‐SAP revealed that the surface of the polymer was rough, and the layered structure that was full of folds caused an enhanced specific surface; such conditions were beneficial to Cd2+ ion adsorption. It was concluded that the CST‐SAP was an excellent adsorbent for Cd2+ ion removal from aqueous solution. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44758.  相似文献   

19.
The potential of cheap cellulose‐containing natural materials such as coir, jute, sawdust and groundnut shells for removal for Pb(II) from aqueous solution of lead nitrate was assessed before and after modifying them with a monochlorotriazine type of dye. The materials showed enhanced adsorption capacity of Pb(II) due to the specific dye loading. This was attributed to chelation and an ion exchange mechanism. The maximum cation uptake values obtained were 0.127, 0.087, 0.090, and 0.106 mmol g?1 for coir, sawdust, jute and groundnut shell in their dyed forms, respectively. The kinetics of both undyed and dyed coir was analysed and the second order rate equation was observed to provide the best correlation of the experimental data. Adsorption isotherm models were developed. The best fit was obtained in the Langmuir model. When subjected to repeated adsorption–desorption cycles, with an intermediate step of mild sodium hydroxide treatment, both dyed and undyed coir retained its adsorptive capacity even after five cycles of reuse. Copyright © 2004 Society of Chemical Industry  相似文献   

20.
This paper describes the removal of Cd(II), Pb(II), Cu(II), and Ni(II) ions from aqueous solutions using chemically modified pine barks (Pinus nigra). In this article, effects of chemical modification methods on the adsorption capacity have been investigated. Changes of the surface properties were examined by the FTIR, SEM and zeta potential analyses. HCl, NaOH, Fenton reactive, polymerization, acetone, ethanol, chloroform, tetra ethylene glycol, diethyl ether and glycol were used for modification processes. Maximum adsorption capacities were obtained by modification with NaOH (13-20 mg/g), Fenton (12-17 mg/g) and polymerization (12-16.5 mg/g). These modification processes also decreased Chemical Oxygen Demand of water from 1820 mg/L for raw pine barks to 35 mg/L for NaOH modified barks. Adsorption capacities of adsorbents increased from 2 mg/g to 20 mg/g as a result of modification that accordingly increase adsorbent surface activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号