首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pharmaceutical antibiotics are not easily removed from water by conventional water‐treatment technologies and have been recognized as new emerging pollutants. Herein, we report the synthesis of clickable azido periodic mesoporous organosilicas (PMOs) and their use as adsorbents for the adsorption of antibiotics. Ethane‐bridged PMOs, functionalized with azido groups at different densities, were synthesized by the co‐condensation of 1,2‐bis(trimethoxysilyl)ethane (BTME) and 3‐azidopropyltrimethoxysilane (AzPTMS), in the presence of nonionic‐surfactant triblock‐copolymer P123, in an acidic medium. Four different alkynes were conjugated to azide‐terminated PMOs by means of an efficient click reaction. The clicked PMOs showed improved adsorption capacity (241 μg g?1) for antibiotics (ciprofloxacin hydrochloride) compared with azido‐functionalized PMOs because of the enhanced π–π stacking interactions. These results indicate that click reactions can introduce multifunctional groups onto PMOs, thus demonstrating the great potential of PMOs for environmental applications.  相似文献   

2.
Bringing order : A new class of periodic mesoporous organosilicas (PMOs) with a urea‐bridged organosilica precursor under acid‐catalyzed and inorganic‐salt‐assisted conditions was obtained. The large‐pore hybrid materials have ordered mesostructure with uniform pore size distributions, which can be seen from the TEM images.

  相似文献   


3.
《化学:亚洲杂志》2017,12(24):3162-3171
New amino‐acid‐bridged periodic mesoporous organosilicas (PMOs) were constructed by hydrolysis and condensation reactions under acid conditions in the presence of a template. The tyrosine bissilylated organic precursor (TBOS) was first prepared through a multistep reaction by using tyrosine (a natural amino acid) as the starting material. PMOs with the tyrosine framework (Tyr‐PMOs) were constructed by simultaneously using TBOS and tetraethoxysilane as complex silicon sources in the condensation process. All the Tyr‐PMOs materials were characterized by XRD, FTIR spectroscopy, N2 adsorption–desorption, TEM, SEM, and solid‐state 29Si NMR spectroscopy to confirm the structure. The horseradish peroxidase (HRP) enzyme was first immobilized on these new Tyr‐PMOs materials. Optimal conditions for enzyme adsorption included a temperature of 40 °C, a time of 8 h, and a pH value of 7. Furthermore, the novel Tyr‐PMOs materials could store HRP for approximately 40 days and maintained the enzymatic activity, and the Tyr‐PMOs–10 % HRP with the best immobilization effect could be reused at least eight times.  相似文献   

4.
Functionalization of periodic mesoporous organosilicas (PMOs) with high loadings of pendant organic groups to form bifunctional PMOs with ordered mesostructures remains a challenging objective. Herein, we report that well‐ordered ethane‐bridged PMOs functionalized with exceptionally high loadings of pendant carboxylic acid groups (up to 80 mol % based on silica) were synthesized by the co‐condensation of 1,4‐bis(trimethoxysilyl)ethane (BTME) and carboxyethylsilanetriol sodium salt (CES) with Pluronic P123 as the template and KCl as an additive under acidic conditions. The bifunctional materials were characterized by using a variety of techniques, including powder X‐ray diffraction, nitrogen‐adsorption/desorption, TEM, and solid‐state 13C and 29Si NMR spectroscopy. Zeta‐potential measurements showed that the surface negative charges increased with increasing the CES content. This property makes them potential candidates for applications in drug adsorption. The excellent adsorption capacity of these bifunctional PMOs towards an anticancer drug (doxorubicin) was also demonstrated.  相似文献   

5.
In this work, three organosilica precursors functionalized with carbamate moieties were synthesized by condensing of 3‐isocyanatopropyltriethoxysilane and coupling regents of either hydroquinone (HQ), bisphenol A (BPA), or 1,1′‐bi‐2‐naphthol (BN). These organosilica precursors were covalently bonded in the framework of periodic mesoporous organosilicas by co‐condensation and hydrolysis with tetraethyl orthosilicate (TEOS) under hydrothermal treatment. The compositions and physical properties were characterized with FTIR, XRD, thermogravimetric/differential thermal analysis (TG/DTA), 29Si NMR, 13C NMR spectroscopies, SEM, TEM, and BET technologies. These characterizations suggest that three different structures were formed as the result of different sizes and compositions of the organosilica precursors. The three mesoporous organosilicas were applied as heterogeneous catalysts in the one‐pot cascade Knoevenagel and Michael cyclopropanic reactions for the synthesis of cyclopropanic derivatives and showed excellent activity and selectivity. The highest conversion was obtained with mesoporous catalyst (MC)‐HQ owing to its ordered mesostructure, highest surface area, and weakest stereo effect of the organic linking groups compared with MC‐BAP and MC‐BN. This methodology employed cheaper and more easily obtainable raw materials as reagents over the traditional alkene additive system and these heterogeneous catalysts exhibit superior performance and recyclability than typical homogeneous organic catalysts.  相似文献   

6.
The preparation and characterization of a set of periodic mesoporous organosilicas (PMOs) that contain different fractions of 1,3‐bis(3‐trimethoxysilylpropyl)imidazolium chloride (BTMSPI) groups uniformly distributed in the silica mesoporous framework is described. The mesoporous structure of the materials was characterized by powder X‐ray diffraction, transmission electron microscopy, and N2 adsorption–desorption analysis. The presence of propyl imidazolium groups in the silica framework of the materials was also characterized by solid‐state NMR spectroscopy and diffuse‐reflectance Fourier‐transform infrared spectroscopy. The effect of the BTMSPI concentration in the initial solutions on the structural properties (including morphology) of the final materials was also examined. The total organic content of the PMOs was measured by elemental analysis, whereas their thermal stability was determined by thermogravimetric analysis. Among the described materials, it was found that PMO with 10 % imidazolium content is an effective host for the immobilization of perruthenate through an ion‐exchange protocol. The resulting Ru@PI‐10 was then employed as a recyclable catalyst in the highly efficient aerobic oxidation of various types of alcohols.  相似文献   

7.
Micelle-templated mesoporous and organic–inorganic hybrid mesoporous materials are important in many fields of material research, especially for hosting catalysts in confined space. Among this class, the recent discovery of periodic mesoporous organosilicas (PMOs) represent an exciting new group of organic–inorganic nanocomposites targeted for a broad range of applications ranging from catalysis to microelectronics. Compared to the earlier generation of organic–inorganic hybrid mesoporous samples, obtained by the cocondensation reaction or by the grafting reaction, PMOs represent the right combination of organic and inorganic groups in the frame wall positions. This article reviews the current state of art in organic–inorganic hybrid mesoporous material research with special emphasis over periodic mesoporous organosilica materials having various redox centers (Ti, V, Cr) suitable for oxidation reactions as well as acidic sites (Al, –SO3H) for the organic transformation of bulky molecules.  相似文献   

8.
New organosilica precursors containing two triethoxysilyl groups suitable for the organosilica material formation through the sol‐gel process were designed and synthesised. These precursors display alkyne or azide groups for attaching targeted functional groups by copper‐catalysed azide–alkyne cycloaddition (CuAAC) and can be used for the preparation of functional organosilicas following two strategies: 1) the functional group is first appended by CuAAC under anhydrous conditions, then the functional material is prepared by the sol‐gel process; 2) the precursor is first subjected to the sol‐gel process, producing porous, clickable bridged silsesquioxanes or periodic mesoporous organosilicas (PMOs), then the desired functional groups are attached by means of CuAAC. Herein, we show the feasibility of both approaches. A series of bridged bis(triethoxysilane)s with different pending organic moieties was prepared, demonstrating the compatibility of the first approach with many functional groups. In particular, we demonstrate that organic functional molecules bearing only one derivatisation site can be used to produce bridged organosilanes and bridged silsesquioxanes. In the second approach, clickable PMOs and porous bridged silsesquioxanes were prepared from the alkyne‐ or azide‐containing precursors, and thereafter, functionalised with complementary model azide‐ or alkyne‐containing molecules. These results confirmed the potential of this approach as a general methodology for preparing functional organosilicas with high loadings of functional groups. Both approaches give rise to a wide range of new functional organosilica materials.  相似文献   

9.
PMOs是以桥联倍半硅氧烷为前驱体,在表面活性剂为结构控制剂的条件下通过溶胶-凝胶法合成的材料,它具有很高的表面积以及规则的孔道和较窄的孔径分布等特点,是一种性能优异的新型功能材料。本文论述了PMOs近年来的发展现状,介绍了PMOs的结构特点,根据结构中桥联有机基团的不同将其分为三类。总结了通过不同的模板合成PMOs的方法,并对影响性能的外部因素进行了探讨。最后提出了几个PMOs研究工作面临的问题,并对PMOs的发展前景作了展望。  相似文献   

10.
Nanoporous materials with functional frameworks have attracted attention because of their potential for various applications. Silica‐based mesoporous materials generally consist of amorphous frameworks, whereas a molecular‐scale lamellar ordering within the pore wall has been found for periodic mesoporous organosilicas (PMOs) prepared from bridged organosilane precursors. Formation of a “crystal‐like” framework has been expected to significantly change the physical and chemical properties of PMOs. However, until now, there has been no report on other crystal‐like arrangements. Here, we report a new molecular‐scale ordering induced for a PMO. Our strategy is to form pore walls from precursors exhibiting directional H‐bonding interaction. We demonstrate that the H‐bonded organosilica columns are hexagonally packed within the pore walls. We also show that the H‐bonded pore walls can stably accommodate H‐bonding guest molecules, which represents a new method of modifying the PMO framework.  相似文献   

11.
Traditional hard‐template methods for the preparation of mesoporous carbon structures have been well developed, but there are difficulties associated with complete filling of the organic precursors in ordered mesochannels and exact replication of the templates. Herein, mesoporous carbon nanorods (meso‐CNRs) were synthesized through thermal condensation of furfuryl alcohol followed by the nano‐confined decomposition of polyfurfuryl alcohol in silica nanotubes (SiO2 NTs) with porous shells. Limited and slow release of gaseous water through the porous shells and finite polyfurfuryl precursor inside silica nanotubes are responsible for the formation of the mesoporous structures. Nitrogen can be doped into the meso‐CNRs by adding guanidine hydrochloride to the precursors. The nitrogen dopant not only stabilizes the ultrasmall and active Pd nanocatalyst in the meso‐CNRs but also increases the electron density of Pd and accelerates the dissociation of H2, both of which increase the catalytic activity of the Pd catalyst in hydrogenation reactions.  相似文献   

12.
Well‐ordered periodic mesoporous organosilicas (PMOs) functionalized with high contents of carboxylic acid (?COOH) groups, up to 85 mol % based on silica, were synthesized by co‐condensation of 1,2‐bis(triethoxysilyl)ethane (BTEE) and carboxyethylsilanetriol sodium salt (CES) under acidic conditions by using alkyl poly(oxyethylene) surfactant Brij 76 as a structure‐directing agent. A variety of techniques including powder X‐ray diffraction (XRD), nitrogen adsorption/desorption, Fourier‐transformed infrared (FTIR), transmission electron microscopy (TEM), 13C‐ and 29Si solid‐state nuclear magnetic resonance (NMR) were used to characterize the products. The materials thus obtained were used as an effective support to synthesize metal nanoparticles (Ag and Pt) within the channel of 2D hexagonal mesostructure of PMOs. The size and distribution of the nanoparticles were observed to be highly dependent on the interaction between the carboxylic acid functionalized group and the metal precursors. The size of Pt nanoparticles reduced from 3.6 to 2.5 nm and that of Ag nanoparticles reduced from 5.3 to 3.4 nm with the increase in the ?COOH loading from 10 to 50 %.  相似文献   

13.
The properties of materials confined in porous media are important in scientific and technological aspects. Topology, size, and surface polarity of the pores play a critical role in the confinement effects, however, knowledge regarding the guest–pore interface structure is still lacking. Herein, we show that the molecular mobility of water confined in periodic mesoporous organosilicas (PMOs) is influenced by the polarity of the organic moiety. Multidimensional solid‐state NMR spectroscopy directly probes the spatial arrangement of water inside the pores, showing that water interacts either with only the silicate layer or with both silicate and organic layers depending on the alternating surface polarity. A modulated and a uniform pore filling mode are proposed for different types of PMOs.  相似文献   

14.
We report that 2,6‐naphthylene‐bridged periodic mesoporous organosilicas exhibit unique fluorescence behavior that reflects molecular‐scale periodicities in the framework. Periodic mesoporous organosilicas consisting of naphthalene–silica hybrid frameworks were synthesized by hydrolysis and condensation of a naphthalene‐derived organosilane precursor in the presence of a template surfactant. The morphologies and meso‐ and molecular‐scale periodicities of the organosilica materials strongly depend on the synthetic conditions. The naphthalene moieties embedded within the molecularly ordered framework exhibited a monomer‐band emission, whereas those embedded within the amorphous framework showed a broad emission attributed to an excimer band. These results suggest that the naphthalene moieties fixed within the crystal‐like framework are isolated in spite of their densely packed structure, different from conventional organosilica frameworks in which only excimer emission was observed for both the crystal‐like and amorphous frameworks at room temperature. This key finding suggests a potential to control interactions between organic groups and thus the optical properties of inorganic/organic hybrids.  相似文献   

15.
A novel chiral mesoporous organosilica with L ‐tartardiamide moieties integrated in the backbone has been synthesized for the first time by a mild synthetic approach with block copolymer P123 as a template. The materials have highly ordered 2D hexagonal mesostructure and uniform pore size in the range of 7.6 to 5.5 nm. NMR, IR, and TG analyses confirm that the tartardiamide group was successfully incorporated into the framework. The intrinsic chirality of L ‐tartardiamide endows the materials with unique optical activities and chiral‐recognition properties. By dissolving the materials into NaOH, the solutions show rotation of polarized light by +8.42° to +15.53°, depending on the amount of the chiral moieties in the materials. Owing to the chirality of L ‐tartardiamide, the materials exhibited chiral‐induction ability in the epoxidation of allyl alcohol, thus further demonstrating the chirality of the materials.  相似文献   

16.
Highly ordered benzene‐bridged periodic mesoporous organosilicas (PMOs) that were functionalized with exceptionally high loadings of carboxylic acid groups (COOH), up to 80 mol % based on silica, have been synthesized and their use as adsorbents for the adsorption of methylene blue (MB), a basic dye pollutant, and for the loading and release of doxorubicin (DOX), an anticancer drug, is demonstrated. These COOH‐functionalized benzene? silicas were synthesized by the co‐condensation of 1,4‐bis(triethoxysilyl) benzene (BTEB) and carboxyethylsilanetriol sodium salt (CES), an organosilane that contained a carboxylic acid group, in the presence of non‐ionic oligomeric surfactant Brij 76 in acidic medium. The materials thus obtained were characterized by a variety of techniques, including powder X‐ray diffraction (XRD), nitrogen‐adsorption/desorption isotherms, TEM, and 13C and 29Si solid‐state NMR spectroscopy. Owing to the exceptionally high loadings of COOH groups, their high surface areas, and possible π? π‐stacking interactions, these adsorbents have very high adsorption capacities and extremely rapid adsorption rates for MB removal and for the controlled loading/release of DOX, thus manifesting their great potential for environmental and biomedical applications.  相似文献   

17.
18.
A complex titania nanostructure of monodisperse spiky mesoporous anatase beads composed of anatase nanocrystals with diameters of less than 15 nm in the core and much larger hollow‐cone shaped spikes on the surface was fabricated using a facile solvothermal process in the presence of ammonia. This proceeded through a controllable phase transformation from an amorphous titania to a metastable amorphous titania/ammonium titanate core‐shell structure then finally to anatase titania. The size of the spiky anatase nanostructures can be increased from approximately 55×100 nm to 160×410 nm (square edge×length) by increasing the ammonia concentration used in the solvothermal treatment step from 2.2 to 17.4 wt. %. Such hollow‐cone shaped nanostructures, as revealed by HRTEM characterization, are single crystals elongated along the c axis of the tetragonal anatase titania. The resultant spiky titania beads have high surface areas of up to 112 m2g?1 and pore diameters and pore volumes that vary depending on the ammonia concentration and solvothermal treatment time. The morphological evolution and crystallization process of the spiky titania beads was investigated using SEM and XRD techniques. A metastable amorphous titania/ammonium titanate core‐shell structure evolved from the smooth amorphous precursor beads producing a “fluffy” titanate intermediate, on further heating the final spiky mesoporous titania beads were clearly observed. This titanate‐phase‐mediated approach allows control over the size of the nanocrystals in the core of the bead, as well as the anatase spikes on the surface, and thereby, tuning of the surface area and porosity of the resultant products. The spiky mesoporous titania beads have been used to prepare working electrodes for dye‐sensitized solar cells achieving a solar to electric power conversion efficiency of 10.30 %, indicating their potential for application in the photovoltaic field. Such complex titania nanostructures would have a number of other possible applications, such as photocatalysis, lithium ion batteries, and catalysis.  相似文献   

19.
20.
A new solid‐sate donor–acceptor system based on periodic mesoporous organosilica (PMO) has been constructed. Viologen (Vio) was covalently attached to the framework of a biphenyl (Bp)‐bridged PMO. The diffuse reflectance spectrum showed the formation of charge‐transfer (CT) complexes of Bp in the framework with Vio in the mesochannels. The transient absorption spectra upon excitation of the CT complexes displayed two absorption bands due to radical cations of Bp and Vio species, which indicated electron transfer from Bp to Vio. The absorption bands slowly decayed with a half‐decay period of approximately 10 μs but maintained the spectral shape, thereby suggesting persistent charge separation followed by recombination. To utilize the charge separation for photocatalysis, Vio–Bp–PMO was loaded with platinum and its photocatalytic performance was tested. The catalyst successfully evolved hydrogen with excitation of the CT complexes in the presence of a sacrificial agent. In contrast, reference catalysts without either Bp–PMO or Vio gave no or little hydrogen generation, respectively. In addition, a homogeneous solution system of Bp molecules, methylviologen, and colloidal platinum also evolved no hydrogen, possibly due to a weaker electron‐donating feature of molecular Bp than that of densely packed Bp in Bp–PMO. These results indicated that densely packed Bp and Vio are essential for hydrogen evolution in this system and demonstrated the potential of PMO as the basis for donor–acceptor systems suitable for photocatalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号