首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Ferromanganese (Fe–Mn) crusts are strongly enriched relative to the Earth's lithosphere in many rare and critical metals, including Co, Te, Mo, Bi, Pt, W, Zr, Nb, Y, and rare-earth elements (REEs). Fe–Mn nodules are strongly enriched in Ni, Cu, Co, Mo, Zr, Li, Y, and REEs. Compared to Fe–Mn crusts, nodules are more enriched in Ni, Cu, and Li, with subequal amounts of Mo and crusts are more enriched in the other metals. The metal ions and complexes in seawater are sorbed onto the two major host phases, FeO(OH) with a positively charged surface and MnO2 with a negatively charged surface. Metals are also derived from diagenetically modified sediment pore fluids and incorporated into most nodules. Seafloor massive sulfides (SMS), especially those in arc and back-arc settings, can also be enriched in rare metals and metalloids, such as Cd, Ga, Ge, In, As, Sb, and Se. Metal grades for the elements of economic interest in SMS (Cu, Zn, Au, Ag) are much greater than those in land-based volcanogenic massive sulfides. However, their tonnage throughout the global ocean is poorly known and grade/tonnage comparisons with land-based deposits would be premature.The Clarion–Clipperton Fe–Mn Nodule Zone (CCZ) in the NE Pacific and the prime Fe–Mn crust zone (PCZ) in the central Pacific are the areas of greatest economic interest for nodules and crusts and grades and tonnages for those areas are moderately well known. We compare the grades and tonnages of nodules and crusts in those two areas with the global terrestrial reserves and resources. Nodules in the CCZ have more Tl (6000 times), Mn, Te, Ni, Co, and Y than the entire global terrestrial reserve base for those metals. The CCZ nodules also contain significant amounts of Cu, Mo, W, Li, Nb, and rare earth oxides (REO) compared to the global land-based reserves. Fe–Mn crusts in the PCZ have significantly more Tl (1700 times), Te (10 times more), Co, and Y than the entire terrestrial reserve base. Other metals of significance in the PCZ crusts relative to the total global land-based reserves are Bi, REO, Nb, and W. CCZ nodules and PCZ crusts are also compared with the two largest existing land-based REE mines, Bayan Obo in China and Mountain Pass in the USA. The land-based deposits are higher grade but lower tonnage deposits. Notably, both land-based deposits have < 1% heavy REEs (HREEs), whereas the CCZ has 26% HREEs and the PCZ, 18% HREEs; the HREEs have a much greater economic value. Radioactive Th concentrations are appreciably higher in the land-based deposits than in either type of marine deposit. A discussion of the differences between terrestrial and marine impacts and mine characteristics is also presented, including the potential for rare metals and REEs in marine deposits to be recovered as byproducts of mining the main metals of economic interest in nodules and crusts.  相似文献   

2.
Bulk chemical, mineralogical and selective leach analyses have been made on a suite of abyssal ferromanganese nodules and associated sediments from the S.W. equatorial Pacific Ocean. Compositional relations between nodules, sediment oxyhydroxides and nearby ferromanganese encrustations are drawn assuming that the crusts represent purely hydrogenetic ferromanganese material. Crusts, δMnO2-rich nodules and sediment oxyhydroxides are compositionally similar and distinct from diagenetic todorokitebearing nodules. Compared to Fe-Mn crusts, sediment oxyhydroxides are however slightly enriched, relative to Mn and Ni, in Fe, Cu, Zn, Ti and Al, and depleted in Co and Pb, reflecting processes of non-hydrogenous element supply and diagenesis. δMnO2 nodules exhibit compositions intermediate between Fe-Mn crusts and sediment oxyhydroxides and thus are considered to accrete oxides from both the water column and associated sediments.Deep ocean vertical element fluxes associated with large organic aggregates, biogenic calcite, silica and soft parts have been calculated for the study area. Fluxes associated with organic aggregates are one to three orders of magnitude greater than those associated with the other phases considered, are in good agreement with element accumulation rates in sediments, and are up to four orders of magnitude greater than element accumulation rates in nodules. Metal release from labile biogenic material in surface sediments can qualitatively explain the differences between the composition of Fe-Mn crusts and sediment oxyhydroxides.Todorokite-rich diagenetic nodules are confined to an eastwards widening equatorial wedge. It is proposed that todorokite precipitates directly from interstitial waters. Since the transition metal chemistry of interstitial waters is controlled dominantly by reactions involving the breakdown of organic carbon, the supply and degradation rate of organic material is a critical factor in the formation of diagenetic nodules. The wide range of (trace metal/Mn) ratios observed in marine todorokite reflects a balance between the release of trace metals from labile biogenic phases and the reductive remobilisation of Mn oxide, both of which are related to the breakdown of organic carbon.  相似文献   

3.
The uptake of Ni and Co in the hydrous Mn oxide or the amorphous Fe-oxide phases of ferromanganese deposits in the oceans was studied by electron-microprobe analyses of 17 natural manganese nodules and by experiments on desorption-dissolution of these metals from synthetic Fe oxide or Mn oxides and natural nodule material. Ni was found to occur nearly always in the Mn-oxide phases of natural nodules, while Co occurs both in the Mn-oxide and Fe-oxide phases, with a slight preference for the latter. The solubility of Ni and Co (from coprecipitates of these metals with Fe hydroxides after aging) in seawater was found to depend strongly on the crystallinity of the host phase. The adsorption of Co by the synthetic Mn oxides from seawater was higher than that of Ni. The experimentally determined solubility of Ni and Co in seawater from natural nodule material is extremely low and matches the concentration range of these metals in ocean water.  相似文献   

4.
通过对东太平洋克拉里恩.克里珀顿区(CC区)和中国多金属结核开辟区(COMRA区)多金属结核的国内外研究资料和数据加以归纳总结,从多金属结核产出的区域地质背景、富集成矿条件以及结核的生长过程及其历史等方面,较全面地阐释了多金属结核的成因机制,深化了对有关多金属结核矿床形成演化控制因素的认识.在明确大洋多金属结核矿床定义基础上,分别建立了基于CC区的宏观、中观和微观三个不同空间尺度的多金属结核区域成矿模型、矿床成矿模型和结核生长模型,完整地提取了多金属结核矿床成因地质模型,为CC区潜在矿产资源的预测和评价提供了重要的科学依据.  相似文献   

5.
Elemental and mineral compositions of cakes (residues left after the acid processing of a technological sample of ferromanganese crusts from the Magellan Seamounts) are investigated. It has been established that hydrosulfuric acid processing of the ferromanganese crust results in the extraction of Mn and associated metals, but a significant part of rare earth and other elements is left in cakes. Electron microscopic investigations of samples after their hydrosulfuric acid processing showed the retention and formation of some rare minerals (monazite, xenotime, coffinite, uranium oxide, molybdite, thallium oxide, and magnetite containing T, Cr, Cu, Pt, and Au). Valuable components can be extracted completely from cakes by the method of combined leaching.  相似文献   

6.
Fourteen ferromanganese nodule–sediment pairs from different sedimentary environments such as siliceous ooze (11), calcareous ooze (two) and red clay (one) from Central Indian Ocean Basin (CIOB) were analysed for major, trace and rare earth elements (REE) to understand the possible elemental relationship between them. Nodules from siliceous and calcareous ooze are diagenetic to early diagenetic whereas, nodule from red clay is of hydrogenetic origin. Si, Al and Ba are enriched in the sediments compared to associated nodules; K and Na are almost in the similar range in nodule–sediment pairs and Mn, Fe, Ti, Mg, P, Ni, Cu, Mo, Zn, Co, Pb, Sr, V, Y, Li and REEs are all enriched in nodules compared to associated sediments (siliceous and calcareous). Major portion of Si, Al and K in both nodules and sediments appear to be of terrigenous nature. The elements which are highly enriched in the nodules compared to associated sediments from both siliceous and calcareous ooze are Mo – (307, 273), Ni – (71, 125), Mn – (64, 87), Cu – (43, 80), Co – (23, 75), Pb – (15, 24), Zn – (9, 11) and V – (8, 19) respectively. These high enrichment ratios of elements could be due to effective diagenetic supply of metals from the underlying sediment to the nodule. Enrichment ratios of transition metals and REEs in the nodule to sediment are higher in CIOB compared to Pacific and Atlantic Ocean. Nodule from red clay, exhibit very small enrichment ratio of four with Mn and Ce while, Al, Fe, Ti, Ca, Na, K, Mg, P, Zn, Co, V, Y and REE are all enriched in red clay compared to associated nodule. This is probably due to presence of abundant smectite, fish teeth, micronodules and phillipsite in the red clay. The strong positive correlation (r ? 0.8) of Mn with Ni, Cu, Zn and Mo and a convex pattern of shale-normalized REE pattern with positive Ce-anomaly of siliceous ooze could be due to presence of abundant manganese micronodules. None of the major trace and REE exhibits any type of inter-elemental relationship between nodule and sediment pairs. Therefore, it may not be appropriate to correlate elemental behaviour between these pairs.  相似文献   

7.
Nodules of various compositions, including ferromanganese nodules, have been found in bottom sediments of an artificial reservoir in the central Altai Territory. The nodules were formed in the alkaline environment against the background of a high carbonate content and saturation with oxygen. The rate of nodule growth is no less than 1.7–1.8 mm/yr and the pH value of water varies from 8.0 to 9.7. Fe and Mn contents in soil and loam of the drainage area are lower than the global clarke value, whereas Ca, K, and Na contents are much higher. The main mass of bottom sediments in the reservoir is markedly enriched in Cd, Mg, Mn, Sr, Ni, Cr, Sb, V, and Pb, but they are depleted in Cu, Mo, Zn, and Li, relative to the soil and loam. Elements in ferromanganese nodules are arranged in the following way in terms of the decreasing concentration coefficient: Mn (27) > Ba (13.4) > Co (10.7) > Mo (9.2) > Cd (5.35) > Ni (3.88) > V (3.52) > Cu (3.3) > Fe (3.2) > Sb (2.17) > Sr (2.04) > Pb (1.5) > Zn (1.43) > Cr (1.1) > Li (0.78) > Mg (0.75) > Na (0.69) > K (0.67) > Ca (0.51). The microelemental composition of nodules in the reservoir qualitatively fits the composition of ferromanganese nodules in seas and oceans. However, the contents of major ore elements (Ni, Cu, Co, Zn, Pb, Mo, and V) in ferromanganese nodules from the World Ocean are much higher than in nodules from the examined reservoir.  相似文献   

8.
The behavior of molybdenum and manganese is studied in phosphorite samples from shelves, seamounts, and islands of the ocean. In shelf phosphorites, molybdenum and manganese contents are 2–128 and 12–1915 ppm, respectively, while the Mo/Mn ratio ranges from 0.004 to 4.5. Phosphorites from oceanic seamounts impregnated with ferromanganese oxyhydroxides contain 0.84–14.5 ppm of Mo and 0.1–17% of Mn. The Mo/Mn ratio ranges within 0.0008–0.004. Phosphate-bearing ferromanganese crusts overlying the seamount phosphorites contain 54–798 ppm of Mo and 10–20% of Mn; Mo/Mn ratio varies within 0.002–0.005. Corresponding values for most island phosphorites are 0.44–11.2 ppm, 27–287 ppm, and 0.008–0.20, respectively. Phosphorites from reduced environments are characterized by a relative enrichment in Mo and depletion in Mn, whereas the Mo/Mn ratio reaches maximum values. The ratio decreases with transition to suboxic and oxic conditions. Molybdenum content in recent shelf sediments is commonly higher than that in authigenic phosphorites from these sediments. Recent phosphorite nodules from the Namibian shelf become depleted in Mo and Mn during their lithification, but Pliocene–Pleistocene nodules of similar composition and origin from the same region are enriched in Mo and characterized by a variable Mn content. The higher Mo content in phosphate-bearing ferromanganese crusts is a result of coprecipitation of Mo and Mn from seawater. Nonweathered phosphorites on continents and phosphorites from oceanic shelves are largely enriched in Mo with the Mo/Mn ratio ranging from 0.01 to 1.0. This is an evidence of their formation in reducing conditions.  相似文献   

9.
为了进一步解释南海不同区域内多金属结核(壳)的地球化学特征与成因,对东部次海盆黄岩?珍贝海山链上新获取的多金属结核(壳)样品进行了X光衍射、X荧光光谱测试、SEM-EDS分析和X Series2 ICP-MS测试,详细分析了样品的矿物组成、地球化学成分特征. 结果表明,矿物组成为水羟锰矿、石英、斜长石等;主要造岩元素中Si、Al含量较高,与陆缘碎屑物影响较大有关;富含Mn、Fe、Co、Ti、Ni、Pb、Sr等多种金属元素,相比南海其他区域,具有中等的Fe、Mn含量特征,地化元素特征与南海西北陆坡发现的铁锰结核(壳)相似;稀土元素具有总量高(平均2 070.01×10-6)的特点,高于南海北部其他样品,与西太平洋结壳稀土含量接近(接近工业品位),指示了重要的稀土资源前景. 结核Be同位素结果指示该区铁锰结核生长时代为1.17~8.51 Ma,形成于晚中新世大量火山喷发之后,因此水成作用是南海东部次海盆海山链结核(壳)的主要控制作用,而陆源物质的输入、火山作用和高压富氢离子海水的浸取作用都为结核(壳)的形成提供了有利的沉积环境.   相似文献   

10.
Sediments from MANOP sites M and H in the eastern tropical Pacific Ocean can be partitioned into operationally defined phases by means of a sequential leach procedure. This paper reports the results of the first leach in the sequence, an acetic acid solution buffered as p H 5 with sodium acetate. This leach is designed to remove carbonate-bound and sorbed cations. The only cation bound in a consistent ratio to calcium in the carbonate is strontium. The molar ratio is 2 × 10?3. In contrast, transition metals are sorbed onto the surfaces of other sedimentary particles. The proportions sorbed range from 2 to 10% of the total manganese, about 10% of the total nickel and copper, and less than 1% of the total iron. The pool of sorbed metals in surface sediments is sufficiently large and the rate of biological stirring is sufficiently rapid for this metal reservoir potentially to dominate the porewater reservoir in supplying metals to ferromanganese nodules. A simple model for nodule growth based upon transfer of metals through this reservoir suggests that only 1% of the sedimentary sorbed metals within a radius of 2 to 9 cm is required to support typical nodule growth rates.  相似文献   

11.
Layered ferromanganese crusts collected by dredge from a water depth range of 2770 to 2200 m on Mendeleev Ridge, Arctic Ocean, were analyzed for mineralogical and chemical compositions and dated using the excess 230Th technique. Comparison with crusts from other oceans reveals that Fe-Mn deposits of Mendeleev Ridge have the highest Fe/Mn ratios, are depleted in Mn, Co, and Ni, and enriched in Si and Al as well as some minor elements, Li, Th, Sc, As and V. However, the upper layer of the crusts shows Mn, Co, and Ni contents comparable to crusts from the Atlantic and Indian Oceans. Growth rates vary from 3.03 to 3.97 mm/Myr measured on the uppermost 2 mm. Mn and Fe oxyhydroxides (vernadite, ferroxyhyte, birnessite, todorokite and goethite) and nonmetalliferous detrital minerals characterize the Arctic crusts. Temporal changes in crust composition reflect changes in the depositional environment. Crust formation was dominated by three main processes: precipitation of Fe-Mn oxyhydroxides from ambient ocean water, sorption of metals by those Fe and Mn phases, and fluctuating but large inputs of terrigenous debris.  相似文献   

12.
13.
Rates of accumulation of Fe and Mn, as well as Cu, Ni, Co, Pb, Zn, Hg, U and Th have been determined for five ferromanganese deposits from four localities in the South Pacific Ocean.Manganese is accumulating in nodules and crusts at a rate roughly equivalent to that found to be accumulating in sediments in the same area. Iron shows a deficiency in accumulation in nodules and crusts with respect to sediments, especially near the continents, but also in the central and south-central Pacific. Copper is accumulating in nodules and crusts at a rate one order of magnitude less than the surrounding sediments.This is interpreted as meaning that most of the Mn is supplied as an authigenic phase to both sediments and nodules while Fe is supplied mostly by ferromanganese micro-nodules and by detrital and adsorbed components of sediments; and Cu is enriched in sediments relative to nodules and crusts most probably through biological activity.  相似文献   

14.
The mobilization, redistribution and fractionation of trace elements during chemical weathering processes have been investigated on a 4.05 m thick terra rossa profile overlying dolomite on the Yunnan-Guizhou Plateau, in Southwest China. In this in situ weathering profile, the ferromanganese concretions and the gibbsite spots coexist in the terra rossa saprolite. The mass-balance evaluation reveals that titanium, Nb and Hf in the terra rossa matrix are conservative elements during chemical weathering compared to Zr. The elements of Li, Sc, V, Cr, Fe, Ga, As, Mo, Cs, Ce, Ta, Tl, Pb and Th in the terra rossa matrix include additions from external sources. Beryllium, Mn, Co, Ni, Cu, Rb, Ba and La are depleted in the shallow parts of the terra rossa profile and enriched in the deep parts. The elements of Zn, Sr, Y, Cd, Sn and U in the terra rossa profile are lost during weathering. Compared to the terra rossa matrix, the ferromanganese concretions are significantly enriched in most trace elements, especially Mn, Co, Cd, Ce, Tl and Pb. In contrast, the gibbsite spots are depleted in all trace elements, except for U. The results regarding specific inter-element relationships indicate that most trace elements have different inter-element relationships in the ferromanganese concretions, the gibbsite spots and the terra rossa matrix. This suggests that the behavior of many trace elements during mobilization and redistribution differs from their behavior during incorporation into secondary mineral phases, especially the Mn and Fe oxides and/or oxyhydroxides in the ferromanganese concretions. It is worthy to note that the fractionation between Ce and Mn occurs under intensive chemical weathering conditions. Correspondingly, beryllium exhibits a similar geochemical behavior as that of rare earth elements (except for Ce) and Y during surface weathering.  相似文献   

15.
Processes of authigenic manganese ore formation in sediments of the northern equatorial Pacific are considered on the basis of study of the surface layer (<2 mm) of ferromanganese nodule and four micronodule size fractions from the associated surface sediment (0–7 cm). Inhomogeneity of the nodule composition is shown. The Mn/Fe ratio is maximal in samples taken from the lateral sectors of nodule at the water-sediment interface. Compositional differences of nodules are related to the preferential accumulation of microelements in iron oxyhydroxides (P, Sr, Pb, U, Bi, Th, Y, and REE), manganese hydroxides (Co, Ni, Cu, Zn, Cd, Mo, Tl, W), and lithogenous component trapped during nodule growth (Ga, Rb, Ba, and Cs). The Ce accumulation in the REE composition is maximal in the upper and lower parts of the nodule characterized by the minimal Mn/Fe values. The compositional comparison of manganese micronodules and surface layers of the nodule demonstrated that the micronodule material was subjected to a more intense reworking during the diagenesis of sediments. The micronodules are characterized by higher Mn/Fe and P/Fe ratios but lower Ni/Cu and Co/Ni ratios. The micronodules and nodules do not differ in terms of contents of Ce and Th that are least mobile elements during the diagenesis of elements. Differences in the chemical composition of micronodules and nodules are related not only to the additional input of Mn in the process of diagenesis, but also to the transformation of iron oxyhydroxides after the removal of Mn from the close association with Fe formed in the suspended matter at the stage of sedimentation.  相似文献   

16.
刘玖芬 《地质与勘探》2014,50(Z1):1382-1387
本文采用四酸溶样ICP6300电感耦合等离子体发射光谱法测试了新疆哈拉奇地区水系沉积物样品中的Li P Ti V Cr Mn Co Ni Cu Zn Sr Y Nb Mo Ba La Pb B W Sn Cd 21种微量元素,明确了该方法测试样品中的Li P Ti V Cr Mn Co Ni Cu Zn Sr Y Nb Mo Ba La 16个元素的检出限、准确度、精密度满足规范(DZ/T0130.2006-2006)要求,而Pb B Cd Sn W5个元素测试质量不能满足规范要求,并对新疆哈拉奇地区水系沉积物采样粒度样品进行了分析测试,验证了该区化探扫面选择10-80目粒度是合适的,但在异常查证工作中要选择10-60目采样粒度更合理。  相似文献   

17.
Distribution of the major and trace elements in ferromanganese nodules, which are buried or exposed on the seafloor, and in host sediments was studied in ten concretion/sediment pairs by various physical and chemical methods. It has been established that, in addition to Fe and Mn, a limited number of the major and trace elements (P, Ca, Sr, Ba, Mo, Co, Zn, Ni, As, Pb, Sb, Tl, U, W, Y, and Ga included) is accumulated with a variable degree of intensity (relative to sediments) in the concretions. As compared to host sediments, the maximal content of Mn in concretions is 100 times higher, whereas maximal contents of all other elements listed above vary from more than one to 10–20 times. Manganese and, to a lesser extent, Ba and Sr are concentrated in the buried concretions. Other elements are primarily concentrated in concretions exposed on the sea-floor. The occurrence mode of concretions and compositional data on interstitial water suggest that metals in the concretions were derived from seawater and suspended particulates, in addition to sediments. Burial of concretions in the sediment pile is accompanied by the alteration of their composition, accumulation of Mn (relative to Fe), and loss of several associated metals.  相似文献   

18.
Hydrothermal Mn-oxide crusts have been removed from the Tonga-Kermadec Ridge, the first such hydrothermal deposits to be reported in the S.W. Pacific island arc. In several respects the deposits are similar to hydrothermal Mn-crusts from oceanic spreading centre settings. They are limited in areal extent, comprise well-crystalline birnessite and generally display extreme fractionation of Mn from Fe. They are strongly depleted in many elements compared to hydrogenous Mn deposits but are comparatively enriched in Li, Zn, Mo and Cd. The Group IA and Group IIA metals show strong intercorrelations and the behaviour of Mg in the purest samples may indicate the extent to which normal seawater has influenced the composition of the deposits.Certain aspects of the deposits are not typical of hydrothermal Mn deposits. In particular at least some of the crusts have developed on a sediment or unconsolidated talus substrate. Some crusts, or specific layers within some crusts, display a chemical composition which suggests a significant input from normal seawater.  相似文献   

19.
The major and minor element composition of ferromanganese nodules from DOMES Site A has been determined by X-ray fluorescence methods. Three phases appear to control the bulk compositions: Mn and Fe oxyhydroxides and aluminosilicates. Relatively wide compositional variations are evident throughout the area. Nodules with high Mn/Fe ratios, high Cu, Mg, Mo, Ni and Zn concentrations and high todorokite/δ-MnO2 ratios have granular surface textures and are confined to an east-west trending depression with thin Quaternary sediment cover. Nodules with low Mn/Fe ratios, high concentrations of As, Ca, Ce, Co, La, P, Sr, Ti, V, Y and Zr and low todorokite/δ-MnO2 ratios have smooth surfaces and are confined to shallower areas with relatively thick Quaternary sediment to the north and south of the depression.All nodules in the area have compositions which are influenced by diagenesis, but those with the most marked diagenetic signature (high Mn/Fe and Cu/Ni ratios, low Ce/La ratios and more todorokite) are found in areas of very slow or non-existent sedimentation; many of these nodules are actually in contact with outcropping Tertiary sediment. This paradox may be resolved by postulating, by analogy with some shallow-water occurrences, that the nodules accrete from bottom waters which have enhanced particulate and dissolved metal contents derived from diagenetic reaction in areas remote from the site of nodule formation. The metals are supplied in a bottom flow (probably Antarctic Bottom Water) which also erodes, or prevents modern sedimentation in, the depression. Nodules on the flanks of the depression are not evidently affected by this flow and derive at least pan of their constituent metals from diagenetic reaction in the underlying Quaternary sediment.Apparently, abyssal diagenetic nodules can have an immediate and a remote diagenetic metal source. Metal fluxes derived from pore water dissolved metal gradients may not be relevant to particular accreting nodules if a significant fraction of their metals is derived from outside the area in which they form.  相似文献   

20.
The Cook Islands (CIs) Exclusive Economic Zone (EEZ) encompasses 1,977,000 km2 and includes the Penrhyn and Samoa basins abyssal plains where manganese nodules flourish due to the availability of prolific nucleus material, slow sedimentation rates, and strong bottom currents. A group of CIs nodules was analyzed for mineralogical and chemical composition, which include many critical metals not before analyzed for CIs nodules. These nodules have varying sizes and nuclei material; however all are composed predominantly of δ-MnO2 and X-ray amorphous iron oxyhydroxide. The mineralogy, Fe/Mn ratios, rare earth element contents, and slow growth rates (mean 1.9 mm/106 years) reflect formation primarily by hydrogenetic precipitation. The paucity of diagenetic input can be explained by low primary productivity at the surface and resultant low organic matter content in seafloor sediment, producing oxic seafloor and sub-seafloor environments. The nodules contain high mean contents of Co (0.41%), Ni (0.38%), Ti (1.20%), and total rare earth elements plus yttrium (REY; 0.167%), and also high contents of Mo, Nb, V, W, and Zr.Compiled data from a series of four cruises by the Japan International Cooperation Agency and the Mining agency of Japan from 1985 to 2000 were used to generate a map that defines the statistical distribution of nodule abundance throughout the EEZ, except the Manihiki Plateau. The abundance distribution map shows a belt of high nodule abundance (19–45 kg/m2) that starts in the southeast corner of the EEZ, runs northwest, and also bifurcates into a SW trending branch. Small, isolated areas contain abundances of nodules of up to 58 kg/m2. Six ~ 20,000 km2 areas of particularly high abundance were chosen to represent potential exploration areas, and maps for metal concentration were generated to visualize metal distribution and to extrapolate estimated metal tonnages within the six sites and the EEZ as a whole. Grades for Mn, Cu, and Ni are low in CIs nodules in areas of high abundance; however, Ti, Co, and REY show high contents where nodule abundances are high. Of the six areas identified to represent a range of metal contents, one at the northern end of the N-S abundance main belt optimizes the most metals and would yield the highest dry metric tons for Mn (61,002,292), Ni (1,247,834), Mo (186,166), V (356,247), W (30,215), and Zr (195,323). When compared with the Clarion–Clipperton Zone, the CIs nodules show higher nodule abundances (> 25 kg/m2 over ~ 123,844 km2), and are more enriched in the green-tech, high-tech, and energy metals Co, Ti, Te, Nb, REY, Pt, and Zr. The CIs EEZ shows a significant resource potential for these critical metals due to their high prices, high demand, and the high nodule abundance, which will allow for a smaller footprint for a 20-year mine site and therefore smaller environmental impact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号