首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The simultaneously developing unsteady laminar fluid flow and heat transfer inside a two dimensional wavy microchannel, due to sinusoidally varying velocity component at inlet has been numerically investigated. The flow was both thermally and hydrodynamically developing while the channel walls were kept at a uniform temperature. The transient solution of two-dimensional Navier-Stokes equation was obtained using the SIMPLE algorithm with the momentum interpolation technique of Rhie and Chow. The simulation was performed in the laminar regime for Prandtl number 7 and Reynolds number ranging from 0.1 to 100. Based on the comparison with steady flow in wavy channel it was found that imposed sinusoidal velocity at inlet can provide improved heat transfer performance at different amplitude (0.2, 0.5, 0.8) and frequency (1, 5, 10).  相似文献   

2.
Numerical computation of fluid flow and heat transfer in microchannels   总被引:12,自引:0,他引:12  
Three-dimensional fluid flow and heat transfer phenomena inside heated microchannels is investigated. The steady, laminar flow and heat transfer equations are solved using a finite-volume method. The numerical procedure is validated by comparing the predicted local thermal resistances with available experimental data. The friction factor is also predicted in this study. It was found that the heat input lowers the frictional losses, particularly at lower Reynolds numbers. At lower Reynolds numbers the temperature of the water increases, leading to a decrease in the viscosity and hence smaller frictional losses.  相似文献   

3.
Laminar convective heat transfer in the entrance region of microchannels of rectangular cross-section is investigated under circumferentially uniform wall temperature and axially uniform wall heat flux thermal boundary conditions. Three-dimensional numerical simulations were performed for laminar thermally developing flow in microchannels of different aspect ratios. Based on the temperature and heat flux distributions obtained, both the local and average Nusselt numbers are presented graphically as a function of the dimensionless axial distance and channel aspect ratio. Generalized correlations, useful for the design and optimization of microchannel heat sinks and other microfluidic devices, are proposed for predicting Nusselt numbers. The proposed correlations are compared with other conventional correlations and with available experimental data, and show very good agreement.  相似文献   

4.
In this paper we report the results of our modelling studies on two-phase forced convection in microchannels using water as the fluid medium. The study incorporates the effects of fluid flow rate, power input and channel geometry on the flow resistance and heat transfer from these microchannels. Two separate numerical models have been developed assuming homogeneous and annular flow boiling. Traditional assumptions like negligible single-phase pressure drop or fixed inlet pressure have been relaxed in the models making analysis more complex. The governing equations have been solved from the grass-root level to predict the boiling front, pressure drop and thermal resistance as functions of exit pressure and heat input. The results of both the models are compared to each other and with available experimental data. It is seen that the annular flow model typically predicts higher pressure drop compared to the homogeneous model. Finally, the model has also been extended to study the effects of non-uniform heat input along the flow direction. The results show that the non-uniform power map can have a very strong effect on the overall fluid dynamics and heat transfer.  相似文献   

5.
In this study heat transfer and fluid flow of Al2O3/water nanofluid in two dimensional parallel plate microchannel without and with micromixers have been investigated for nanoparticle volume fractions of ϕ = 0, ϕ = 4%  and base fluid Reynolds numbers of Ref = 5, 20, 50. One baffle on the bottom wall and another on the top wall work as a micromixer and heat transfer enhancement device. A single-phase finite difference FORTRAN code using Projection method has been written to solve governing equations with constant wall temperature boundary condition. The effect of various parameters such as nanoparticle volume fraction, base fluid Reynolds number, baffle distance, height and order of arrangement have been studied. Results showed that the presence of baffles and also increasing the Re number and nanoparticle volume fraction increase the local and averaged heat transfer and friction coefficients. Also, the effect of nanoparticle volume fraction on heat transfer coefficient is more than the friction coefficient in most of the cases. It was found that the main mechanism of enhancing heat transfer or mixing is the recirculation zones that are created behind the baffles. The size of these zones increases with Reynolds number and baffle height. The fluid pushing toward the wall by the opposed wall baffle and reattaching of separated flow are the locations of local maximum heat transfer and friction coefficients.  相似文献   

6.
A numerical simulation for studying fluid flow and heat transfer characteristics in microchannels at slip flow regime with consideration of slip and temperature jump is studied. The wall roughness is simulated in two cases with periodically distributed triangular microelements and random shaped micro peaks distributed on the wall surfaces. Various Knudsen numbers have used to investigate the effects of rarefaction. The numerical results have also checked with available theoretical and experimental relations and good agreements has achieved. It has been found that rarefaction has more significant effect on flow field in microchannels with higher relative roughness. The negative influence of roughness on fluid flow and heat transfer found to be the friction factor increment and Nusselt number reduction. In addition high influence of roughness distribution and shape has been shown by a comparison of Poiseuille and Nusselt numbers for tow different cases.  相似文献   

7.
Thermal management issues are limiting barriers to high density electronics packaging and miniaturization. Liquid cooling using micro and mini channels is an attractive alternative to large and bulky aluminum or copper heat sinks. These channels can be integrated directly into a chip or a heat spreader, and cooling can be further enhanced using nanofluids (liquid solutions with dispersed nanometer-sized particles) due to their enhanced heat transfer effects reported in literature. The goals of this study are to evaluate heat transfer improvement of a nanofluid heat sink with developing laminar flow forced convection, taking into account the pumping power penalty. The phrase heat transfer enhancement ratio (HTR) is used to denote the ratio of average heat transfer coefficient of nanofluid to water at the same pumping power. The proposed model uses semi-empirical correlations to calculate nanofluid thermophysical properties. The predictions of the model are found to be in good agreement with experimental studies. The validated model is used to identify important design variables (Reynolds number, volume fraction and particle size) related to thermal and flow characteristics of the microchannel heat sink with nanofluids. Statistical analysis of the model showed that the volume fraction is the most significant factor impacting the HTR, followed by the particle diameter. The impact of the Reynolds number and other interaction terms is relatively weak. The HTR is maximized at smallest possible particle diameter (since smaller particles improve heat transfer but do not impact pumping power). Then, for a given Reynolds number, an optimal value of volume fraction can be obtained to maximize HTR. The overall aim is to present results that would be useful for understanding and optimal design of microchannel heat sinks with nanofluid flow.  相似文献   

8.
This study investigates the design, construction and instrumentation of an experimental microchannel, with a rectangular cross-section and large aspect ratio, that allows characterization of the flow and convective heat transfer under well defined and precise conditions and makes it possible to vary the hydraulic diameter of the microchannel. The flow friction coefficient is estimated by direct pressure drop measurements inside the microchannel in a zone where the flow is fully developed. Since the wall thermal conditions inside the microchannel can not be measured directly, their estimation requires temperature measurements in the wall thickness and an inverse heat conduction method. The thermal and hydrodynamic results obtained by varying the hydraulic diameter between 1 mm and 100 μm do not deviate from the theory or empirical correlations for large-scale channels. These results let us confirm that for smooth walls the continuum mechanics laws for convection and fluid mechanics remain valid in microchannels of hydraulic diameter greater than or equal to 100 μm.  相似文献   

9.
Experiments were conducted to investigate flow and heat transfer characteristics of water in rectangular microchannels. All tests were performed with deionized water. The flow rate, the pressures, and temperatures at the inlet and outlet were measured. The friction factor, heat flux, and Nusselt number were obtained. The friction factor in the microchannel is lower than the conventional value. That is only 20% to 30% of the convectional value. The critical Reynolds number below which the flow remains laminar in the microchannel is also lower than the conventional value. The Nusselt number in the microchannel is quite different from the conventional value. The Nusselt number for the microchannel is lower than the conventional value when the flow rate is small. As the flow rate through the microchannel is increased, the Nusselt number significantly increases and exceeds the value of Nusselt number for the fully developed flow in the conventional channel. The micro‐scale effect was exhibited. The Nusselt number is also affected by the heat flux. The Nusselt number remains the constant value when the flow rate is small. The Nusselt number increases with the increase in the heat flux when the flow rate is large. © 2008 Wiley Periodicals, Inc. Heat Trans Asian Res, 37(4): 197–207, 2008; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20206  相似文献   

10.
The transient heat transfer in forced convection for simultaneously developing laminar flow inside a parallel-plate channel is studied by solving the steady momentum equation with the generalized integral transform technique and the transient energy equation through a hybrid approach that combines the integral transform method with a second-order accurate finite-differences scheme. Semi-analytical results are then presented for the fluid bulk temperature and local Nusselt number along the channel as a function of position and time.  相似文献   

11.
Two-Phase Flow Patterns and Heat Transfer in Parallel Microchannels   总被引:1,自引:0,他引:1  
MicroChannel heat sinks with two-phase flow can satisfy the increasing heat removal requirements of modern micro electronic devices. One of the important aspects associated with two- phase flows in microchannels is to study the bubble behavior. However, in the literature most of the reports present data of only a single channel. This does not account for flow mixing and hydrodynamic instability that occurs in parallel microchannels, connected by common inlet and outlet collectors. In the present study, experiments were performed for air- water and steam- water flow in parallel triangular microchannels with a base of 200-300μ m. The experimental study is based on systematic measurements of temperature and flow pattern by infrared radiometry and high-speed digital video imaging. In air-water flow, different flow patterns were observed simultaneously in the various microchannels at a fixed values of water and gas flow rates. In steam-water flow, instability in uniformly heated microchannels was observed.  相似文献   

12.
In this paper, heat transfer and pressure drop characteristics of copper–water nanofluid flow through isothermally heated corrugated channel are numerically studied. A numerical simulation is carried out by solving the governing continuity, momentum and energy equations for laminar flow in curvilinear coordinates using the Finite Difference (FD) approach. The investigation covers Reynolds number and nanoparticle volume fraction in the ranges of 100–1000 and 0–0.05 respectively. The effects of using the nanofluid on the heat transfer and pressure drop inside the channel are investigated. It is found that the heat transfer enhancement increases with increase in the volume fraction of the nanoparticle and Reynolds number, while there is slight increase in pressure drop. Comparisons of the present results with those available in literature are presented and discussed.  相似文献   

13.
Numerical results of three-dimensional separated flow and heat transfer in an enlarged rectangular channel are presented in this paper.The expansion ratio and aspect ratio of the channel are 2.0 and 16.0,respectively.Reynolds number of the flow is 200 and it is over the critical Reynolds number.Over the critical Reynolds number,the flow in the symmetric channel becomes asymmetric and deflects to one side of the walls.Effects of the pulsating fluctuation at the inlet upon the flow in the channel are investigated.It is clarified that the inlet flow with a pulsating fluctuation of Strouhal number 0.05 and 0.10 strongly affects on the flow in the channel,and heat transfer on the walls is enhanced,especially on the wall surface covered with long separation bubble.On the other hand,the pulsation of St=0.0125 oscillates the shear layer more weakly than that of St=0.05,0.10 and the enhancement of heat transfer is smaller,though some vortices are shed from the vicinity of the side wall near the reattachment region.The oscillation of the main flow calms down gradually as the Strouhal number of the pulsation increases over 0.10.The influence of pulsation of St=0.20 on the flow is restricted in the near downstream of the step,and heat transfer on the walls is almost similar to that of the steady flow in the channel.  相似文献   

14.
Flow boiling experiments were conducted in straight and expanding microchannels with similar dimensions and operating conditions. Deionized water was used as the coolant. The test vehicles were made from copper with a footprint area of 25 mm × 25 mm. Microchannels having nominal width of 300 μm and a nominal aspect ratio of 4 were formed by wire cut Electro Discharge Machining process. The measured surface roughness (Ra) was about 2.0 μm. To facilitate easier comparison with the straight microchannels and also to simplify the method of fabrication, the expanding channels were formed with the removal of fins at selected location from the straight microchannel design, instead of using a diverging channel. Tests were performed on both the microchannels over a range of mass fluxes, heat fluxes and an inlet temperature of 90 °C. It was observed that the two-phase pressure drop across the expanding microchannel heat sink was significantly lower as compared to its straight counterpart. The pressure drop and wall temperature fluctuations were seen reduced in the expanding microchannel heat sink. It was also noted that the expanding microchannel heat sink had a better heat transfer performance than the straight microchannel heat sink, under similar operating conditions. This phenomenon in expanding microchannel heat sink, which was observed in spite of it having a lower convective heat transfer area, is explained based on its improved flow boiling stability that reduces the pressure drop oscillations, temperature oscillations and hence partial dry out.  相似文献   

15.
16.
A fundamental understanding of electrolytic flow in microchannels is essential for the design of microfluidic devices. Hence, an analytic investigation is presented on the effects of electrostatic potential in microchannels. Solving the Navier–Stokes equations, an expression for the CfRe product is presented. Solving the energy equation the Nusselt number for constant wall heat flux and constant wall temperature boundary conditions are presented with analytic expressions over a wide range of operating conditions.  相似文献   

17.
采用扩展混合长度湍流模型和S IM PLE算法,用共轭数值计算的方法模拟航空发动机涡轮盘冷却系统的高位进气、径向出流转静系旋转盘腔模型的流场和温度场,分析了其盘面平均努塞尔数N uav随旋转雷诺数R eω和流量系数Cw的变化。结果表明,随着转速和冷气流量的提高换热得以增强,但在本次计算范围内提高转速对换热的增强幅度小于提高冷气流量对换热的增强幅度。  相似文献   

18.
Predictions of flow and heat transfer in microchannels are ongoing issues in microfludics. This work focused on laminar flow (69 < Re < 800) within rectangular microchannel with hydraulic diameter from 106 μm to 307 μm for single-phase liquid flow. The friction factors obtained by experiments on the microchannels showed that conventional theory for fully-developed flow is applicable within the range of our experiments. A manifold configuration which ensured uniform flow through the microchannel array is thought to contribute to the improvement of accuracy. The average Nusselt number for the microchannel array was also evaluated experimentally in the condition of constant heat transfer rate. We found that there were deviations between the experimental and theoretical values of heat transfer rate in the microchannels. In order to predict heat transfer rate accurately, we proposed an empirical correlation in terms of Nu/(Re0.62 Pr0.33) and Brinkman number confined to the experimental range. The correlation is expected to be useful to design the microchannel devices related to heat transfer.  相似文献   

19.
Heat transfer and pressure drop characteristics are investigated here using experimental and analytical techniques for a dimple plate heat exchanger. The analysis uses the log mean temperature difference method (LMTD) in all its calculations. Whilest the shell side flow highly resembles the flow over a rough or wavy plate, the tube side passage in these represents the flow over short hexagonal tube banks with the flowing across the sectional areas between the hexagons having the shape of a benzene ring. Local and global experimental measurements are carried out around the heat exchanger. Furthermore, analytical models for both sides of the heat exchanger were obtained from the literature. Reasonable cross match between experimental and analytical results could be obtained. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
A finite difference analysis of heat conduction problem in a cylinder terminating in a frustum of a cone is presented. The constriction can be either in vacuum or in a gaseous environment. A fine mesh of 2500 × 800 was used for the construction of the grid such that very small constrictions could be analysed sufficiently accurately. Small constrictions i.e., small contact areas separated by large voids filled with a gas are typical of most practical applications involving contact heat transfer. The result of the finite difference analysis shows that gap conductance is predominant for all the gases considered. Gap-to-solid conductance ratio increases as the cone angle decreases due to the decrease of gap thickness. It also indicates that increase of conductance ratio is less significant at higher constriction angles. Finally, predicted conductance parameters are compared with the experimental results for different interfacial gases and a very good agreement is obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号