首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Fractions major in ginsenosides Rg1 and Rb1 from Sanchi saponins were transformed by human fecal flora. This study yielded the corresponding aglycone, protopanaxatriol, in 49.4% from Rg1, protopanaxadiol 20‐O‐glucoside in 54.8% from Rb1, and dihydroprotopanaxadiol 20‐O‐glucoside in 87.6% from dihydro Rb1, by incubation with healthy feces for 70 h in subgram level. Never the less large‐scale incubation of crude Sanchi saponins revealed the complete biotransformation of Rb1 and the almost unchanged Rg1. A small amount of Rg1 was found to be converted into 20 R‐ginsenoside Rh1 and its dehydration product, 20(22) Z‐ginsenoside Rh4.  相似文献   

2.
Notoginsenoside R1 (NGR1), a diagnostic protopanaxatriol‐type (ppt‐type) saponin in Panax notoginseng, possesses potent biological activities including antithrombotic, anti‐inflammatory, neuron protection and improvement of microcirculation, yet its pharmacokinetics and metabolic characterization as an individual compound remain unclear. The aim of this study was to investigate the exposure profile of NGR1 in rats after oral and intravenous administration and to explore the metabolic characterization of NGR1. A simple and sensitive ultra‐fast liquid chromatographic–tandem mass spectrometric method was developed and validated for the quantitative determination of NGR1 and its major metabolites, and for characterization of its metabolic profile in rat plasma. The blood samples were precipitated with methanol, quantified in a negative multiple reaction monitoring mode and analyzed within 6.0 min. Validation parameters (linearity, precision and accuracy, recovery and matrix effect, stability) were within acceptable ranges. After oral administration, NGR1 exhibited dose‐independent exposure behaviors with t1/2 over 8.0 h and oral bioavailability of 0.25–0.29%. A total of seven metabolites were characterized, including two pairs of epimers, 20(R)‐notoginsenoside R2/20(S)‐notoginsenoside R2 and 20(R)‐ginsenoside Rh1/20(S)‐ginsenoside Rh1, with the 20(R) form of saponins identified for the first time in rat plasma. Five deglycometabolites were quantitatively determined, among which 20(S)‐notoginsenoside R2, ginsenoside Rg1, ginsenoside F1 and protopanaxatriol displayed relatively high exploration, which may partly explain the pharmacodynamic diversity of ginsenosides after oral dose.  相似文献   

3.
A highly sensitive and specific LC‐MS/MS method was developed to investigate the in vivo bio‐transformation of oleuropein in rat. Rat feces and urine samples collected after oral administration were determined by liquid chromatography coupled to tandem mass spectrometry with electrospray ionization in the negative‐ion mode. The assay procedure involves a simple liquid–liquid extraction of parent oleuropein and the metabolite from rat feces and urine with ethyl acetate. Chromatographic separation was operated with 0.1% formic acid aqueous and methanol in gradient program at a flow rate of 0.50 mL/min on an RP‐C18 column with a total run time of 31 min. This method was successfully applied to simultaneous determination of oleuropein and its metabolites in rat feces and urine. De‐glucosylation, hydrolysis, oxygenation and methylation were found to comprise the major metabolic pathway of oleuropein in rat gastrointestinal tract and three metabolites were absorbed into the blood circulatory system within 24 h after oral administration. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
Ginsenoside compound K (CK) is an active metabolite of ginsenoside and has been shown to have ameliorative property in various diseases. However, the detailed in vivo metabolism of this compound has rarely been reported. In the present study, a method using liquid chromatography quadrupole time‐of‐flight tandem mass spectrometry together with multiple data processing techniques, including extracted ion chromatogram, multiple mass defect filter and MS/MS scanning, was developed to detect and characterize the metabolites of CK in rat urine and feces. After oral administration of CK at a dose of 50 mg/kg, urine and feces were collected for a period of time and subjected to a series of pretreatment. A total of 12 metabolites were tentatively or conclusively identified, comprising 11 phase I metabolites and a phase II metabolite. Metabolic pathways of CK has been proposed, including oxidation, deglycosylation, deglycosylation with sequential oxidation and dehydrogenation and deglycosylation with sequential glucuronidation. Relative quantitative analyses suggested that deglycosylation was the main metabolic pathway. The result could offer insights for better understanding of the mechanism of its pharmacological activities.  相似文献   

5.
Meisoindigo has been a routine therapeutic agent in the clinical treatment of chronic myelogenous leukemia in China since the 1980s. However, information relevant to in vivo metabolism of meisoindigo is absent so far. In this study, in vivo circulatory metabolites of meisoindigo in rat plasma, as well as excretory metabolites in rat urine and feces, were identified by liquid chromatography/tandem mass spectrometry (LC/MS/MS). Integration of multiple reaction monitoring with conventional metabolic profiling methodology was adopted to enable a more sensitive detection of in vivo metabolites. By comparing with the MS/MS spectra and retention times of the in vitro reduced metabolites, the major metabolites in rat plasma were proposed to form from 3,3′ double bond reduction, whereas the minor metabolites were formed from reduction followed by N‐demethylation, and reduction followed by phenyl mono‐oxidation. The major metabolites in the rat urine were proposed to form from reduction followed by phenyl mono‐oxidation, and its glucuronide conjugation and sulfate conjugation, whereas the minor metabolites were formed from 3,3′ double bond reduction, N‐demethylation, reduction followed by N‐demethylation, phenyl di‐oxidation, phenyl mono‐oxidation and its glucuronide conjugation and sulfate conjugation. The major metabolites in the rat feces were proposed to form from reduction followed by phenyl mono‐oxidation, whereas the minor metabolites were formed from reduction followed by N‐demethylation, and reduction followed by phenyl di‐oxidation. The phase I metabolic pathways showed a significant in vitro–in vivo correlation in rat. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Ginsenosides have been widely conceded as having various biological activities and are considered to be the active ingredient of ginseng. Nowadays, preparative high‐performance liquid chromatography is considered to be a highly efficient method for ginseng saponins purification and preparation. However, in the process of practical application, due to the complex and varied composition of natural products and relatively simple pretreatment process, it is likely to block the chromatographic column and affect the separation efficiency and its service life. In this work, an orthogonal strategy was developed; in the first‐dimension separation, reverse‐phase macroporous resin was applied to remove impurities in ginseng crude extracts and classified ginseng extracts into protopanaxatriol and protopanaxadiol fractions. In the second‐dimension separation, the obtained fractions were further separated by a preparative hydrophilic column, and finally yielded 11 pure compounds. Eight of them identified as ginsenoside Rh1, Rg2, Rd, Rc, Rb2, Rb1, Rg1, and Re by standards comparison and electrospray ionization mass spectrometry. The purity of these ginsenosides was assessed by high‐performance liquid chromatography with UV detection.  相似文献   

7.
Isopropyl 3‐(3,4‐dihydroxyphenyl)‐2‐hydroxypropanoate (IDHP) is an investigational new drug having the capacity for treating ailments in the cardiovascular and cerebrovascular system. In this work, a rapid and sensitive method using high‐performance liquid chromatography coupled with electrospray ionization quadrupole time‐of‐flight tandem mass spectrometry (HPLC‐ESI‐Q‐TOF‐MS) was developed to reveal the metabolic profile of IDHP in rats after oral administration. The method involved pretreatment of the samples by formic acid–methanol solution (v/v, 5:95), chromatographic separation by an Agilent Eclipse XDB‐C18 column (150 × 4.6 mm i.dx., 5 μm) and online identification of the metabolites by Q‐TOF‐MS equipped with electrospray ionizer. A total of 16 metabolites from IDHP, including four phase I metabolites and 12 phase II metabolites, were detected and tentatively identified from rat plasma, urine and feces. Among these metabolites, Danshensu (DSS), a hydrolysis product of IDHP, could be further transformed to 11 metabolites. These results indicated that DSS was the main metabolite of IDHP in rats and the major metabolic pathways of IDHP in vivo were hydrolysis, O‐methylation, sulfation, glucuronidation and reduction. The results also demonstrated that renal route was the main pathway of IDHP clearance in rat. The present study provided valuable information for better understanding the efficacy and safety of IDHP. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
In order to illustrate the main biotransformation pathways of vaccarin in vivo, metabolites of vaccarin in rats were identified using a specific and sensitive high‐performance liquid chromatography–electrospray ionization linear ion trap mass spectrometry (LTQ XL?) method. The rats were administered a single dose (200 mg/kg) of vaccarin by oral gavage. By comparing their changes in molecular masses (ΔM), retention times and spectral patterns with those of the parent drug, the parent compound and six metabolites were found in rat urine after oral administration of vaccarin. The parent compound and five metabolites were detected in rat plasma. In heart, liver and kidney samples, respectively, one, four and three metabolites were identified, in addition to the parent compound. Three metabolites, but no trace of parent drug, were found in the rat feces. This is the first systematic metabolism study of vaccarin in vivo. The biotransformation pathways of vaccarin involved methylation, hydroxylation, glycosylation and deglycosylation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
A rapid and sensitive liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method has been developed and validated for simultaneous quantification of ginsenosides Rg1, Re and notoginsenoside R1 in human plasma. Chromatography was performed on Capcell Pak C18 MG II column using a binary gradient using mobile phase A (5 mm ammonium formate solution) and B (methanol, containing 5 mm ammonium formate) at a flow rate of 0.3 mL/min. The entire chromatographic run time was 3.2 min. Quantification was achieved using multiple reaction monitoring in positive mode using API 3000. This method was validated in terms of specificity, linearity, precision, accuracy, matrix effect and stability. The calibration curves were linear in the concentration range of 0.020–5.00 ng/mL for ginsenosides Rg1, Re and notoginsenoside R1. The lower limit of quantification (LLOQ) of this method was 0.020 ng/mL. The intra‐run and inter‐run precision values were within 12.31% for ginsenoside Rg1, 14.13% for ginsenoside Re and 11.46% for notoginsenoside R1 at their LLOQ levels. The samples were stable under all tested conditions. This method was successfully applied to study the pharmacokinetics of ginsenoside Rg1 and notoginsenoside R1 in 24 healthy volunteers following oral administration of 200 mg Sanqi Tongshu Enteric‐Pellets Capsule.  相似文献   

10.
The metabolism of swertiamarin (STM) in vivo was studied by LC/MS following picolinoyl derivatization. Incubation of erythrocentaurin (ECR), one of the main in vitro metabolites of STM by intestinal bacteria, with liver microsome indicated that STM may be metabolized to the final metabolite 3,4‐dihydro‐5‐(hydroxymethyl) isochroman‐1‐one (HMIO) in vivo. After hydrolyzation with sulfatase, HMIO was successfully detected in rat plasma after oral administration of STM by LC/MS following picolinoyl derivatization. 4‐Methoxyphenyl methanol was used as the internal standard to quantify HMIO in rat plasma. The full metabolic pathway of STM in rats is proposed. STM is first hydrolyzed by bacterial β‐glucusidase to give aglycone, which is readily converted to ECR and nitrogen‐containing metabolite. ECR is further reduced to HMIO by both liver and intestinal bacteria and HMIO is finally converted to the new sulfate conjugate metabolite. The monoterpene compound STM was found to be metabolized to dihydroisocoumarin and alkaloid compounds in vivo, which may be responsible for the pharmacological effect of STM. The results may shed light on clinical efficacy of STM and the new analytical method developed may assist in studies of the metabolism of other natural iridoids and secoiridoids in vivo. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
Isocorynoxeine (ICOR) is one of the bioactive oxindole alkaloids in Uncaria species. This study presents the pharmacokinetics and mass balance of ICOR in rats after oral dose of 40.0 mg/kg and intravenous dose of 4.0 mg/kg through detection of ICOR and its in vivo metabolites, using an optimized LC-MS with recoveries ranged from 94 to 104%, accuracy varied from 96 to 103%, and relative standard deviation for assay being less than 5%. ICOR reached its Cmax of 336.7 ng/mL in plasma 3 hr after oral dose. The phase I metabolites of ICOR, 11-hydroxyisocorynoxeine (M1), and 10-hydroxyisocorynoxeine (M2) were detected in rat heart, kidneys, urine, and feces; whereas, in rat liver and bile, M1, M2, along with phase II metabolites, 11-hydroxyisocorynoxeine 11-O-β-D-glucuronide, and 10-hydroxyisocorynoxeine 10-O-β-D-glucuronide were identified. ICOR (77.0%) was excreted into feces and urine after oral administration within 72 hr, 0.93% drained into bile in 8 hr, 17.9% biotransformed into M1 and M2 at a ratio of ca. 1:1, and 0.028% detected in main organs at tmax, in which brain uptake index is 3.2 ng/g. This work affords a developed and validated LC-MS for simultaneous determination of ICOR and its in vivo metabolites with improved precision and accuracy.  相似文献   

12.
A novel, sensitive and reliable ultra fast liquid chromatography‐tandem mass spectrometry (UFLC‐MS/MS) method has been developed and validated for simultaneous quantitation of eight main active ingredients (evodiamine, rutaecarpine, dehydroevodiamine, limonin, ginsenoside Rb1, Rd, Re and Rg1) in rat plasma after oral administration of Wu‐Zhu‐Yu (WZY) decoction, which is a celebrated and widely used Traditional Chinese Medicine formula for the treatment of headache. The analytes and internal standard (IS) were separated on a SHIM‐PACK XR‐ODS II column, and the detection was performed on a UFLC‐MS/MS system with turbo ion spray source. The lower limits of quantification were 1.5, 0.5, 1.0, 2.0, 2.0, 1.0, 0.5 and 0.2 ng ml?1 for evodiamine, rutaecarpine, dehydroevodiamine, limonin, gensenoside Rb1, Rd, Re and Rg1, respectively. Linearity, accuracy, precision and absolute recoveries of the eight analytes were all within satisfaction. The IS‐normalized matrix factor was adopted for assessing the matrix effect and accompanied with a satisfactory result. The validated method has been successfully applied to compare pharmacokinetic profiles of the eight active ingredients in rat plasma between normal and headache rats after administration. Exact pharmaceutical effect of WZY decoction on headache was demonstrated by the ethological response of headache rats induced by nitric oxide donor after administration. The results indicated that the absorption of evodiamine, rutaecarpine, gensenoside Rb1, Re and Rg1 in headache group were significantly higher than those in normal group with similar concentration–time curves while no significant differences existed in limonin and ginsenoside Rd between the two groups. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
The metabolism of gentiopicroside (GPS) in vivo was studied for the first time by LC–MS following picolinoyl derivatization. Incubation of erythrocentaurin, one of the main in vitro metabolites of GPS by intestinal bacteria, with liver microsome indicated that GPS might be metabolized to a final metabolite 3,4‐dihydro‐5‐(hydroxymethyl)isochroman‐1‐one (HMIO) in vivo. After hydrolysis with sulfatase, HMIO was successfully detected in rat plasma after oral administration of GPS by LC–MS following picolinoyl derivatization. 4‐Methoxyphenyl methanol was used as an internal standard to quantify HMIO in rat plasma. A metabolic pathway of GPS in rats is proposed. The monoterpene compound GPS was found to be metabolized to dihydroisocoumarin, which may be responsible for the pharmacological effect of GPS.  相似文献   

14.
Ganoderic acid B (GAB), a representative triterpenoid in Ganoderma lucidum, possesses various pharmaceutical effects and has been used as a chemical marker in quality control of G. lucidum and related products. The metabolites of GAB in vivo after its oral administration to rats were investigated by liquid chromatography coupled with electrospray ionization hybrid ion trap and time‐of‐flight mass spectrometry. A total of 14 metabolites of GAB in rat plasma, bile and various organs were detected and identified by direct comparison with the authentic compounds and their characteristic mass fragmentation patterns. The results showed that oxidization and hydroxylation were the common metabolic pathways for GAB in rats. Moreover, some reduction metabolites of GAB were detected in rat kidney and stomach and glucuronidation only appeared in rat bile. This is the first report on the metabolites of GAB in vivo. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Lu F  Sun Q  Bai Y  Bao S  Li X  Yan G  Liu S 《Biomedical chromatography : BMC》2012,26(10):1269-1275
We elucidated the structure and metabolite profile of eleutheroside B, a component derived from the extract of Acanthopanax senticosus Harms, after oral administration of the extract in rats. Samples of rat plasma were collected and analyzed by selective high‐resolution liquid chromatography/quadrupole time‐of‐flight mass spectrometry (UPLC/Q‐TOF MS) automated data analysis method. A total of 11 metabolites were detected: four were identified, and three of those four are reported for the first time here. The three new plasma metabolites were identified on the basis of mass fragmentation patterns and literature reports. The major in vivo metabolic processes associated with eleutheroside B in A. senticosus include demethylation, acetylation, oxidation and glucuronidation after deglycosylation. A fairly comprehensive metabolic pathway was proposed for eleutheroside B. Our results provide a meaningful basis for drug discovery, design and clinical applications related to A. senticosus in traditional Chinese medicine. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Previous pharmacological studies have indicated that diterpenoids are the primary effective chemical cluster in the seeds of Euphorbia lathyris L. The seed products are used in traditional Chinese medicine in the forms of Semen Euphorbiae (SE) and Semen Euphorbiae Pulveratum (SEP). However, the metabolism of the plant's diterpenoids has not been well elucidated, which means that the in vivo metabolite products have not been identified. The current study screened the physiological metabolites of six diterpenes [Euphorbia factor L1 (L1), L2 (L2), L3 (L3), L7a (L7a), L7b (L7b), and L8 (L8)] in feces and urine of rats after oral administration of SE and SEP using UHPLC-Q-Exactive MS. A total of 22 metabolites were detected in feces and 8 in urine, indicating that the major elimination route of diterpenoids is via the colon. Hydrolysis, methylation, and glucuronidation served as the primary metabolic pathways of these diterpenoids. In sum, this study contributed to the elucidation of new metabolites and metabolic pathways of SE and SEP, and the new chemical identities can be used to guide further pharmacokinetic studies.  相似文献   

17.
In vivo metabolites of ketorolac (KTC) have been identified and characterized by using liquid chromatography positive ion electrospray ionization high resolution tandem mass spectrometry (LC/ESI‐HR‐MS/MS) in combination with online hydrogen/deuterium exchange (HDX) experiments. To identify in vivo metabolites, blood urine and feces samples were collected after oral administration of KTC to Sprague–Dawley rats. The samples were prepared using an optimized sample preparation approach involving protein precipitation and freeze liquid separation followed by solid‐phase extraction and then subjected to LC/HR‐MS/MS analysis. A total of 12 metabolites have been identified in urine samples including hydroxy and glucuronide metabolites, which are also observed in plasma samples. In feces, only O‐sulfate metabolite and unchanged KTC are observed. The structures of metabolites were elucidated using LC‐MS/MS and MSn experiments combined with accurate mass measurements. Online HDX experiments have been used to support the structural characterization of drug metabolites. The main phase I metabolites of KTC are hydroxylated and decarbonylated metabolites, which undergo subsequent phase II glucuronidation pathways. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Epimedin C is one of the major bioactive constituents of Herba Epimedii. In this study, the metabolite profiles of epimedin C in rat plasma and bile were qualitatively investigated, and the possible metabolic pathways of epimedin C were subsequently proposed. After oral administration of epimedin C at a single dose of 80 mg/kg, rat biological samples were collected and pretreated by protein precipitation. Then these pretreated samples were injected into an Acquity UPLC BEH C18 column and detected by ultra‐performance liquid chromatography/quadrupole‐time‐of‐flight mass spectrometry. In all, 12 metabolites were identified in the biosamples. Of these, eight, two from plasma and six from bile, are, to our knowledge, reported here for the first time. The results indicated that epimedin C was metabolized via desugarization, dehydrogenation, hydrogenation, dehydroxylation, hydroxylation, demethylation and glucuronidation pathways in vivo. Thus, this study revealed the possible metabolite profiles of epimedin C in rat plasma and bile. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
Saponin PH, akemisaponins E, saponin PJ1 and scheffoleoside A, the main bioactive triterpene saponins of Chinese traditional medicine Akebia trifoliata, contribute to its diuretic pharmacological activity. Because of interactions of the multiple ingredients in vivo, pharmacokinetic studies of multiple triterpenes after administration of A. trifoliata extract are essential to clarify their pharmacological effects. The purpose of this study was to develop an efficient and sensitive UHPLC–MS/MS method for simultaneous determination of these four triterpene saponins in rat plasma. The biosamples were prepared by liquid–liquid extraction with n‐butanol. The chromatographic separation was performed on a Phenomenex Luna® C18 (150 × 2 mm, 3 μm) with a mobile phase consisting of acetonitrile and water at a flow rate of 0.5 mL/min. The MS/MS system was operated in a negative multiple reaction monitoring mode, and the precursor–product ion transitions were optimized as m/z 941.6 → 471.1 for saponin PH, 941.7 → 471.2 for akemisaponins E, 1089.7 → 601.1 for saponin PJ1, 957.6 → 487.4 for scheffoleoside A and 799.5 → 637.3 for ginsenoside Rg1 (Rg1, internal standard). Method validation parameters (calibration curve linearity, lower limit of detection, recovery, matrix effect, intra‐ and inter‐day precision) were within the acceptable ranges. This is the first reported on the UHPLC–MS/MS detection of saponin PH, akemisaponins E, saponin PJ1 and scheffoleoside A, and applied to a preclinical pharmacokinetic study after oral administration of A. trifoliata extract in rats. This study provides a basis for clinical application and further development of A. trifoliata extract.  相似文献   

20.
Magnoflorine, an important aporphine alkaloid in Coptidis Rhizoma, is increasingly attracting research attention because of its pharmacological activities. The in vivo and in vitro metabolism of magnoflorine was investigated by LC LTQ‐Orbitrap MS. In vivo samples including rat urine, feces, plasma and bile were collected separately after both oral (50 mg kg?1) and intravenous administration (10 mg kg?1) of magnoflorine, along with in vitro samples prepared by incubating magnoflorine with rat intestinal flora and liver microsome. As a result, 12 metabolites were found in biological samples. Phase I metabolites were identified in all biological samples, while phase II metabolites were mainly detected in urine, plasma and bile. In a pharmacokinetic study, rats were not only dosed with magnoflorine via oral (15, 30 and 60 mg kg?1) and intravenous administration (10 mg kg?1) but also dosed with Coptidis Rhizoma decoction (equivalent to 30 mg kg?1 of magnoflorine) by intragastric administration to investigate the interaction of magnoflorine with the rest of compounds in Coptidis Rhizoma. Studies showed that magnoflorine possessed lower bioavailability and faster absorption and elimination. However, pharmacokinetic parameters altered significantly (p < 0.05) when magnoflorine was administered in Coptidis Rhizoma decoction. Oral gavage of Coptidis Rhizoma decoction decreased the absorption and elimination rates of magnoflorine, which revealed that there existed pharmacokinetic interactions between magnoflorine and the rest of ingredients in Coptidis Rhizoma. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号