共查询到20条相似文献,搜索用时 15 毫秒
1.
We report on the development and applications of an interface-capturing method aimed at computing three-dimensional incompressible two-phase flows involving high density and viscosity ratios, together with capillary effects. The numerical approach borrows some features to the Volume of Fluid method (since it is essentially based on the transport of the local volume fraction of the liquid) as well as to the Level Set technique (as no explicit reconstruction of the interface is carried out). The transport of the volume fraction is achieved by using a flux-limiting Zalesak scheme and the fronts are prevented from spreading in time by a specific strategy in which the velocity at nodes crossed by the interface is modified to keep the thickness of the transition region constant. As shown on several test cases, this algorithm allows the interface to deform properly while maintaining the numerical thickness of the transition region within three computational cells whatever the structure of the local flow field. The full set of governing equations is then used to investigate some fundamental aspects of bubble dynamics. More precisely we focus on the evolution of shape and rise velocity of a single bubble over a wide range of physical parameters and on head-on and side-by-side interactions between two rising bubbles. 相似文献
2.
New data is presented for horizontal air/water two-phase flow having various flow regimes. It is shown that drift-flux models are able to correlate these data and that the drift velocity, Vgj, is normally finite. 相似文献
3.
Andrea Cioncolini John R. Thome Carlo Lombardi 《International Journal of Multiphase Flow》2009,35(12):1138-1148
The study considers the prediction of pressure gradients in adiabatic gas–liquid annular two-phase flow in the macro-to-microscale range. Twenty-four empirical correlations have been tested against an experimental data bank drawn together in this study containing 3908 points for eight different gas–liquid combinations and 22 different tube diameters, covering microscale and macroscale channels from 0.517 to 31.7 mm in diameter. The correlations of Lombardi, Friedel and Baroczy-Chisholm were found to be the best existing methods when considering macroscale data only, while the microscale database was best predicted by the correlations of Lombardi, Müller-Steinhagen and Heck and the homogeneous model with the two-phase viscosity defined according to Cicchitti. A new correlating approach based on the vapor core Weber number, capable of providing physical insight into the flow, was proposed and worked better than any of the existing methods for the macroscale database. This new macroscale method was then extended to cover microscale conditions, resulting in one unified method for predicting annular flows from the macroscale to the microscale covering both laminar and turbulent liquid films. The macroscale method optimized for microchannels worked better than any of the other methods considered. 相似文献
4.
In this paper, we have proposed a time marching intregral equation method which does not have the limitation of the time linearized
integral equation method in that the latter method can not satisfactorily simulate the shock-wave motions. Firstly, a model
problem—one dimensional initial and boundary value wave problem is treated to clarify the basic idea of the new method. Then
the method is implemented for 2-D and 3-D unsteady transonic flow problems. The introduction of the concept of a quasi-velocity-potential
simplifies the time marching integral equations and the treatment of trailing vortex sheet condition. The numerical calculations
show that the method is reasonable and reliable. 相似文献
5.
A solver is developed for time-accurate computations of viscous flows based on the conception of Newton‘s method. A set of pseudo-time derivatives are added into governing equations and the discretized system is solved using GMRES algorithm. Due to some special properties of GMRES algorithm, the solution procedure for unsteady flows could be regarded as a kind of Newton iteration. The physical-time derivatives of governing equations are discretized using two different approaches, I.e., 3-point Euler backward, and Crank-Nicolson formulas, both with 2nd-order accuracy in time but with different truncation errors. The turbulent eddy viscosity is calculated by using a version of Spalart~Allmaras one-equation model modified by authors for turbulent flows. Two cases of unsteady viscous flow are investigated to validate and assess the solver, I.e., low Reynolds number flow around a row of cylinders and transonic bi-circular-arc airfoil flow featuring the vortex shedding and shock buffeting problems, respectively. Meanwhile, comparisons between the two schemes of timederivative discretizations are carefully made. It is illustrated that the developed unsteady flow solver shows a considerable efficiency and the Crank-Nicolson scheme gives better results compared with Euler method. 相似文献
6.
A general relationship between the volume fraction and the specific interfacial area for averaged dispersed two-phase flows is proposed. This relationship, expressed as a basic set of two scalar evolution equations and two vectorial non-uniformity state equations, is an analytical result obtained by a systematic approach using the derivatives of some generalized functions and a local volume-averaging technique. The proposed set of equations was expressed for measurable macroscopic parameters of the system and has the same generality as the averaged transport equations of two-phase flows. By combination of the basic set of equations, called the averaged topological equations (ATEs), second-order ATEs for the volume fraction were found. The second-order ATEs were expressed both by a Lagrangian formulation and by a Eulerian formulation. The importance and physical meaning of the ATEs developed in this study were clarified within the framework of the theory of kinematic waves. 相似文献
7.
Examples of numerical calculations of isothermal flows of two-phase two-component mixtures based on the density-functional method are presented. Using this method, the following problems are calculated in the two-dimensional formulation: drop impact on a liquid layer, drop rupture in a Couette flowfield, wetting-angle formation for a drop on a solid surface, development of Rayleigh-Taylor and Kelvin-Helmholtz instability on a gas-liquid interface.Translated from Izvestiya Rossiiskoi Academii Nauk, Mekhanika Zhidkosti i Gaza, No. 6, 2004, pp. 101–114.Original Russian Text Copyright © 2004 by Demyanov and Dinariev. 相似文献
8.
The dense solid-phase governing equations for two-phase flows are obtained by using the kinetic theory of gas molecules. Assuming that the solid-phase velocity distributions obey the Maxwell equations, the collision term for particles under dense two-phase flow conditions is also derived. In comparison with the governing equations of a dilute two-phase flow, the solid-particle‘s governing equations are developed for a dense turbulent solid-liquid flow by adopting some relevant terms from the dilute two-phase governing equations. Based on Cauchy-Helmholtz theorem and Smagorinsky model, a second-order dynamic sub-grid-scale (SGS) model, in which the sub-grid-scale stress is a function of both the strain-rate tensor and the rotation-rate tensor, is proposed to model the two-phase governing equations by applying dimension analyses. Applying the SIMPLEC algorithm and staggering grid system to the two-phase discretized governing equations and employing the slip boundary conditions on the walls, the velocity and pressure fields, and the volumetric concentration are calculated. The simulation results are in a fairly good agreement with experimental data in two operating cases in a conduit with a rectangular cross-section and these comparisons imply that these models are practical. 相似文献
9.
A mathematically rigorous method of homogenization is presented and used to analyze the equivalent behavior of transient flow of two incompressible fluids through heterogeneous media. Asymptotic expansions and H-convergence lead to the definition of a global or effective model of an equivalent homogeneous reservoir. Numerical computations to obtain the homogenized coefficients of the entire reservoir have been carried out via a finite element method. Numerical experiments involving the simulation of incompressible two-phase flow have been performed for each heterogeneous medium and for the homogenized medium as well as for other averaging methods. The results of the simulations are compared in terms of the transient saturation contours, production curves, and pressure distributions. Results obtained from the simulations with the homogenization method presented show good agreement with the heterogeneous simulations. 相似文献
10.
低浓度固液两相流的颗粒相动理学模型 总被引:11,自引:0,他引:11
用广义Fokker-Planck扩散模型描述液相湍动对颗粒的挟带作用,用修正的BGK模型描述粒间碰撞效应,建立了封闭的颗粒相PDF输运方程.运用Chapman-Enskog迭代法求得方程的二阶近似解,获得颗粒相脉动速度二阶矩和三阶矩闭合关系.模型与颗粒流模型相容,与液相湍流闭合模型是否相容依赖于扩散模型的具体形式,并据此比较了不同的涡一颗粒作用模型.模型与二维明渠流轻质沙和天然沙试验资料符合很好.表明细小粒径颗粒能够充分跟随水流运动;大粒径颗粒的相间平均速度差和壁面滑移速度明显,近壁区内的颗粒沿流向和垂向脉动强度都可能大于水流,并存在一定程度的颗粒碰撞效应. 相似文献
11.
P. Andreussi A. Di Donfrancesco M. Messia 《International Journal of Multiphase Flow》1988,14(6):777-785
A liquid hold-up gauge based on the measurement of the electrical impedance has been developed for application in gas-liquid pipe flow. The gauge consists of two ring electrodes mounted flush to the pipe wall. The impedance (capacitance or conductance) seen by the electrodes depends on the distance between them and on the liquid hold-up. For distances above three tube diameters, the impedance is independent of the flow configuration for all separated flow patterns and, with good approximation, also for intermittent flows. Moreover, capacitance or conductance are linearly related to the liquid hold-up. The impedance under bubble flow conditions closely follows the theoretical predictions due to Maxwell. Also for the other flow configurations (annular, stratified, intermittent) the results of static and/or dynamic calibration agree closely with theoretical models. 相似文献
12.
In the present paper, a multifluid model of two-phase flows with pulverized-coal combustion, based on a continuum-trajectory
model with reacting particle phase, is developed and employed to simulate the 3-D turbulent two-phase flows and combustion
in a new type of pulverized-coal combustor with one primary-air jet placed along the wall of the combustor. The results show
that: (1) this continuum-trajectory model with reacting particle phase can be used in practical engineering to qualitatively
predict the flame stability, concentrations of gas species, possibilities of slag formation and soot deposition, etc.; (2)
large recirculation zones can be created in the combustor, which is favorable to the ignition and flame stabilization.
Sponsored by the National Key Projects of Fundamental Research of China. 相似文献
13.
An improved large eddy simulation using a dynamic second-order sub-grid-scale (SGS) stress model has been developed to model
the governing equations of dense turbulent particle-liquid two-phase flows in a rotating coordinate system, and continuity
is conserved by a mass-weighted method to solve the filtered governing equations. In the current second-order SGS model, the
SGS stress is a function of both the resolved strain-rate and rotation-rate tensors, and the model parameters are obtained
from the dimensional consistency and the invariants of the strain-rate and the rotation-rate tensors. In the numerical calculation,
the finite volume method is used to discretize the governing equations with a staggered grid system. The SIMPLEC algorithm
is applied for the solution of the discretized governing equations. Body-fitted coordinates are used to simulate the two-phase
flows in complex geometries. Finally the second-order dynamic SGS model is successfully applied to simulate the dense turbulent
particle-liquid two-phase flows in a centrifugal impeller. The predicted pressure and velocity distributions are in good agreement
with experimental results.
The project supported by the National Natural Science Foundation of China (50779069 and 90510007), the Start-up Scientific
Research Foundation of China Agricultural University (2006021) and the Beijing Natural Science Foundation (3071002). 相似文献
14.
The effect of a non-uniform parallel high magnetic field on flow control characteristics is investigated experimentally for a magnetic fluid single-phase flow and an air—magnetic fluid two-phase flow in a vertical channel. It is found that as the magnetic field strength is increased, the friction factor of the single-phase flow increases significantly. For the two-phase flow, the friction pressure loss and the head pressure loss, which is smaller than the friction loss, are negligibly small compared with the magnetic pressure loss. In the case where air is injected 27.9d upstream from the maximum magnetic field, the air flow is blocked by the magnetic force in the entrance of the magnetic field, which leads to increases in both local void fraction and pressure drop there. In the case where air is injected 1.43d downstream from the maximum magnetic field, the air flow is accelerated, resulting in a decrease in void fraction and an increase in pressure rise. In the latter case and under the present range of experimental conditions, the magnetic pumping head reaches 0.02 MPa at the highest, and the maximum circulation flow rate reaches twice as high as non-magnetically driven flow rate. 相似文献
15.
Summary A numerical scheme is presented which employs the characteristic surfaces in space-time for solving Navier-Stokes equations for compressible fluid flow. We consider the general case of a three-dimensional flow, a simplification of which yields the equations of the two-dimensional case. Emphasis is put on the method itself. We apply it to simulate a laminar hypersonic flow around a circular cylinder of a five-components gas mixture of nitrogen and oxygen with thermally perfect constituents and at chemical nonequilibrium. First, the partial differential equations are transformed into a standard form with directional derivatives, enabling to attain the compatibility conditions, including the viscosity terms. These conditions are discretized by approximating their integrals along the corresponding characteristic surfaces. The result is an explicit time-marching numerical scheme. Using a grid fitted between the shock and the cylinder, and starting from roughly estimated initial conditions, a steady solution is searched. A comparison is made with the solution obtained under the assumption of a perfect gas. Received 6 April 1999; accepted for publication 13 May 1999 相似文献
16.
An efficient and accurate uncertainty propagation methodology for mechanics problems with random fields is developed in this
paper. This methodology is based on the stochastic response surface method (SRSM) which has been previously proposed for problems
dealing with random variables only. This paper extends SRSM to problems involving random fields or random processes fields.
The favorable property of SRSM lies in that the deterministic computational model can be treated as a black box, as in the
case of commercial finite element codes. Numerical examples are used to highlight the features of this technique and to demonstrate
the accuracy and efficiency of the proposed method. A comparison with Monte Carlo simulation shows that the proposed method
can achieve numerical results close to those from Monte Carlo simulation while dramatically reducing the number of deterministic
finite element runs.
The project supported by the National Natural Science Foundation of China (10602036).
The English text was polished by Yunming Chen. 相似文献
17.
A second-order moment two-phase turbulence model for simulating dense gas-particle flows (USM- model), combining the unified second-order moment two-phase turbulence model for dilute gas-particle flows with the kinetic theory of particle collision, is proposed. The interaction between gas and particle turbulence is simulated using the transport equation of two-phase velocity correlation with a two-time-scale dissipation closure. The proposed model is applied to simulate dense gas-particle flows in a horizontal channel and a downer. Simulation results and their comparison with experimental results show that the model accounting for both anisotropic particle turbulence and particle-particle collision is obviously better than models accounting for only particle turbulence or only particle-particle collision. The USM- model is also better than the k--kp- model and the k--kp-p- model in that the first model can simulate the redistribution of anisotropic particle Reynolds stress components due to inter-particle collision, whereas the second and third models cannot.The project supported by the Special Funds for Major State Basic Research of China (G-1999-0222-08), the National Natural Science Foundation of China (50376004), and Ph.D. Program Foundation, Ministry of Education of China (20030007028) 相似文献
18.
The authors discuss the application of hot-film anemometers in gas-liquid two-phase flow. Having stored the digitized record of the anemometer output signal on magnetic tape, methods are discussed that permit the identification of the vapour-phase using electronic computer programs. Methods are described to identify large vapour slugs and small bubbles. The authors propose an extension of these methods to the treatment of two-phase flows containing both large and small bubbles. 相似文献
19.
20.
The use of multigrid methods in complex fluid flow problems is recent and still under development. In this paper we present a multigrid method for the incompressible Navier-Stokes equations. The distinctive features of the method are the use of a pressure-correction method as a smoother and a novel continuity-preserving manner of grid coarsening. The shear-driven cavity problem is used as a test case to demonstrate the efficiency of the method. 相似文献