共查询到20条相似文献,搜索用时 22 毫秒
1.
Kah-Siew Tan Takayuki Hoson Yoshio Masuda Seiichiro Kamisaka 《Physiologia plantarum》1991,83(3):397-403
Rice ( Oryza sativa L. cv. Sasanishiki) coleoptiles grown under water achieved greater length than those grown either in air or under water with constant air bubbling. The extensibility of cell walls in coleoptiles grown under water was larger than that in the other treatments. Per unit length of the coleoptile, the content of ferulic and diferulic acids ester-linked to hemicelluloses was higher in air and bubbling type coleoptiles than in water type ones. The extensibility of the coleoptile cell walls correlated with the content of diferulic acids per unit length and per hemicellulose, suggesting that the enhancement of the formation of diferulic acid bridges in hemicelluloses in air or under water with air bubbling makes the cell walls mechanically rigid; thereby inhibiting cell elongation in rice coleoptiles. In addition, the ratio of diferulic acid to ferulic acid was almost constant irrespective of coleoptile age, zone and growth conditions, suggesting that the feruloylation of hemicelluloses is rate-limiting in the formation of diferulic acid bridges in the cell walls of rice coleoptiles. 相似文献
2.
Submergence of air-grown rice seedlings (Oryza sativa L. var. Sasanishiki) induces elongation of the coleoptile. We investigated whether rapid underwater extension is associated with a loss of starch. After 1 d of submergence the starch content was reduced by 70%. This loss of reserve carbohydrate was accompanied by a 38% increase in the concentration of glucose in the cell sap of the coleoptiles. The submerged (starch-depleted) coleoptiles had a slower negative gravitropism than the air-grown controls, although the rate of elongation in the horizontal position was not impaired. We conclude that the submergence-induced mobilization of starch provides substrates and osmotica for the rapidly growing cells. In addition, our results indicate that a full complement of starch is necessary for normal gravitropism in the rice coleoptile. 相似文献
3.
Kensuke Miyamoto Junichi Ueda Satomi Takeda Kazuko Ida Takayuki Hoson Yoshio Masuda Seiichiro Kamisaka 《Physiologia plantarum》1994,92(2):350-355
White fluorescent light (5 W m−2 ) inhibited Avena coleoptile growth. Light caused in increase in minimum stress relaxation time and a decrease in extensibility (strain/load) of coleoptile cell walls. Light increased the contents of ferulic acid (FA) and diferulic acid (DFA) ester-linked to the hemicellulose I in cell walls. These changes in the phenolic contents correlated with those of the mechanical properties of cell walls, suggesting that light stimulates the formation of DFA in hemicellulose I, making cell walls rigid, and thus results in growth inhibition. The ratio of DFA to FA was almost constant in the dark, but decreased in light, although it was almost constant in Oryza coleoptiles either in the dark or in light (Tan et al. 1992). From this fact, it is speculated that in the light condition, the formation of DFA in cell walls is limited in the step of the peroxidase catalyzed coupling reaction to produce DFA, while in the dark it is limited in the step of the feruloylation of hemicellulose I. 相似文献
4.
Growth promotion and an increase in cell wall extensibility by silicon in rice and some other Poaceae seedlings 总被引:6,自引:0,他引:6
M. T. Hossain R. Mori K. Soga K. Wakabayashi S. Kamisaka S. Fujii R. Yamamoto T. Hoson 《Journal of plant research》2002,115(1):0023-0027
The effect of silicon on organ growth and its mechanisms of action were studied in rice (Oryza sativa L. cv. Koshihikari), oat (Avena sativa L. cv. Victory), and wheat (Triticum aestivum L. cv. Daichino-Minori) seedlings grown in the dark. Applying silicon in the form of silicic acid to these seedlings via
culture solution resulted in growth promotion of third (rice) or second (oat and wheat) leaves. The optimal concentration
of silicon was 5–10 mM. No growth promotion was observed in early organs, such as coleoptiles or first leaves. In silicon-treated
rice third leaves, the epidermal cell length increased, especially in the basal regions, without any effect on the number
of cells, showing that silicon promoted cell elongation but not cell division. Silicon also increased the cell wall extensibility
significantly in the basal regions of rice third leaves. These results indicate that silicon stimulates growth of rice and
some other Poaceae leaves by increasing cell wall extensibility.
Received: July 31, 2001 / Accepted: September 18, 2001 相似文献
5.
A new method is described for evaluation of submergence tolerance of rice ( Oryza sativa L.) plants. Responses of a range of cultivars corresponded with known differences in field performance. The method 1) allows fast and effective determination of submergence tolerance, 2) allows screening of many plants in a small glasshouse area, 3) provides for recovery of superior plants for seed collection, 4) allows manipulation of many environmental variables to mimic the natural submergence environment, and 5) uses simple, inexpensive, readily available equipment. Physiological studies performed with this method gave results similar to those obtained from field studies and showed that submergence tolerance increased in older plants; it decreased with increasing depth, increasing temperature and with high or low light levels. The system is ideal for the rapid evaluation of rice germplasm under controlled conditions and physiological studies on the mechanism of rice submergence tolerance. 相似文献
6.
Auxin-induced changes of wall-rheological properties during different growth rates of rye coleoptile segments (Secale cereale L.) were investigated. In addition, changes of osmotic concentration and turgor pressure were measured. Decrease of turgor and of osmotic concentration followed a synchronous time course. Auxin-incubated segments exhibited a faster decrease and eventually lower values of both parameters. Creep test extensibility measurements demonstrate that apparent plastic as well as elastic extensibility of distilled-water-incubated segments strongly decreased during 24 h. In auxin-incubated segments apparent plastic as well as elastic extensibilities were strongly increased, even in the absence of growth due to insufficient turgor pressure. The increasing effect of auxin on elastic wall properties is also reflected by an increase in relative reversible length (part of segment length by which segments shrink after freezing/thawing as referred to total length) and a complementary decrease of relative irreversible length (remaining length after turgor elimination as referred to turgid length); again the effects were independent of growth rate and turgor pressure. Cellulose synthesis inhibition of approx. 80% by dichlorobenzonitrile (DCB) had no significant effect either on growth or on wall-rheological properties. Independent of whether the changed rheological wall behaviour of auxin-incubated segments is causally related to the mechanism of auxin-induced wall loosening, it indicates changes of wall polymer properties and/or interactions which are conserved when no actual length increase occurs due to insufficient turgor pressure. The results suggest that IAA-induced wall loosening may be primarily mediated by cell wall changes other than cleavage of covalent, load-bearing bonds as hypothesized in various wall loosening models. 相似文献
7.
Auxin-mediated elongation growth of isolated subapical coleoptile segments of maize (Zea mays L.) is controlled by the extensibility of the outer cell wall of the outer epidermis (Kutschera et al., 1987). Here we investigate the hypothesis that auxin controls the extensibility of this wall by changing the orientation of newly deposited microfibrils through a corresponding change in the orientation of cortical microtubules. On the basis of electron micrographs it is shown that cessation of growth after removal of the endogenous source of auxin is correlated with a relative increase of longitudinally orientated microfibrils and microtubules at the inner wall surface. Conversely, reinduction of growth by exogenous auxin is correlated with a relative increase of transversely orientated microfibrils and microtubules at the inner wall surface. These changes can be detected 30–60 min after the removal and addition of auxin, respectively. The functional significance of directional changes of newly desposited wall microfibrils for the control of elongation growth is discussed. 相似文献
8.
It has been found that coleoptiles of dark-grown rice (Oryza sativa L.) seedlings undergo regular circumnutation in circular orbits with periods of about 180 min. Both clockwise and counter-clockwise movements were observed, but individual coleoptiles continued to rotate only in one direction. Light-grown seedlings did not show circumnutation. In fact, dark-grown seedlings were found to cease circumnutating in response to a pulse of red light (R). This light-induced inhibition of circumnutation was demonstrated to involve both a FR-inducible very-low-fluence response, solely mediated by phytochrome A, and a FR-reversible low-fluence response, mediated by phytochrome B and/or C. The R-induced inhibition of circumnutation showed temporal agreement with the R-induced inhibition of coleoptile growth, suggesting that the former results from the latter. However, about 25% of growth activity remained after R treatment, indicating that circumnutation is more specifically regulated by phytochrome. The R-treated coleoptile showed gravitropism. Investigation of the growth differential for gravitropic curvature revealed that gravitropic responsiveness was rather enhanced by R. The results suggested that gravitropism is not a cause of circumnutation. It remained probable, however, that gravity perception is a part of the mechanism of circumnutation. It is speculated that the circumnutation investigated aids the seedling shoot in growing through the soil. 相似文献
9.
S. W. Adkins T. Shiraishi J. A. McComb S. Ratanopol T. Kupkanchanakul L. J. Armstrong A. L. Schultz 《Physiologia plantarum》1990,80(4):647-654
The ability to withstand complete submergence was studied in R2 seedlings raised by self-pollination from 158 R1 plants regenerated from callus of mature rice seeds (cultivars FR13A and Calrose). Compared to parental controls, significant improvement in submergence tolerance as assessed by percentage survival, number of new leaves and chlorophyll content of the third leaf, was found in 5 of the 115 cv. FR13A somaclones and 3 of the 43 cv. Calrose somaclones tested using an aquarium system in a controlled-temperature glasshouse. With some exceptions these improvements were also observed in the R3 generation when tested under field conditions in Thailand. Variation in other agronomically important characters was observed in the R2 plants grown in a temperature glasshouse under 2 contrasting environments. 相似文献
10.
The function of the epidermis in auxinmediated elongation growth of maize (Zea mays L.) coleoptile segments was investigated. The following results were obtained: i) In the intact organ, there is a strong tissue tension produced by the expanding force of the inner tissues which is balanced by the contracting force of the outer epidermal wall. The compression imposed by the stretched outer epidermal wall upon the inner tissues gives rise to a wall-pressure difference which can be transformed into a water-potential difference between inner tissues and external medium (water) by removal of the outer epidermal wall. ii) Peeled segments fail to respond to auxin with normal growth. The plastic extensibility of the inner-tissue cell walls (measured with a constant-load extensiometer using living segments) is not influenced by auxin (or abscisic acid) in peeled or nonpeeled segments. It is concluded that auxin induces (and abscisic acid inhibits) elongation of the intact segment by increasing (decreasing) the extensibility specifically in the outer epidermal wall. In addition, tissue tension (and therewith the pressure acting on the outer epidermal wall) is maintained at a constant level over several hours of auxin-mediated growth, indicating that the inner cells also contribute actively to organ elongation. However, this contribution does not involve an increase of cell-wall extensibility, but a continuous shifting of the potential extension threshold (i.e., the length to which the inner tissues would extend by water uptake after peeling) ahead of the actual segment length. Thus, steady growth involves the coordinated action of wall loosening in the epidermis and regeneration of tissue tension by the inner tissues. iii) Electron micrographs show the accumulation of striking osmiophilic material (particles of approx. 0.3 m diameter) specifically at the plasma membrane/cell-wall interface of the outer epidermal wall of auxin-treated segments. iv) Peeled segments fail to respond to auxin with proton excretion. This is in contrast to fusicoccin-induced proton excretion and growth which can also be readily demonstrated in the absence of the epidermis. However, peeled and nonpeeled segments show the same sensitivity to protons with regard to the induction of acid-mediated in-vivo elongation and cell-wall extensibility. The observed threshold at pH 4.5–5.0 is too low to be compatible with a second messenger function of protons also in the growth response of the inner tissues. Organ growth is described in terms of a physical model which takes into account tissue tension and extensibility of the outer epidermal wall as the decisive growth parameters. This model states that the wall pressure increment, produced by tissue tension in the outer epidermal wall, rather than the pressure acting on the inner-tissue walls, is the driving force of growth.Abbreviations and symbols
E
el, E
pl
elastic and plastic in-vitro cell-wall extensibility, respectively
-
E
tot
E
el+E
pl
- FC
fusicoccin
- IAA
indole-3-acetic acid
- IT
inner tissue
- ITW
inner-tissue walls
- OEW
outer epidermal wall
-
osmotic pressure
-
P
wall pressure
-
water potential 相似文献
11.
水稻耐淹涝性状的遗传分析和SSR标记的研究 总被引:5,自引:0,他引:5
淹涝胁迫对水稻生产造成了严重影响, 发掘可应用于耐淹涝辅助选择的分子标记(MAS), 将有助于水稻耐淹涝性状的遗传改良。应用耐淹涝材料FR13A和淹涝敏感材料IR39595-503-2-1-2为亲本做正反交获得F1和F2代群体。对正反交的F1群体的耐淹涝性状进行遗传分析, 发现正反交的F1代群体在耐淹涝性状上没有显著差异, 说明耐淹涝性状是核基因控制。从两次淹涝处理中F2代群体的分离情况来看, 来源于FR13A的耐淹特性表现出数量-质量性状遗传的特点。当淹涝胁迫压力比较轻时表现为数量性状遗传, 具有微效多基因的作用。当淹涝胁迫压力增大时, 表现为主效基因控制的质量性状。在SSR分析中, 187对SSR引物中有73对引物在两亲本间有明显的差异, 差异率为39%。用这73对差异引物, 对F2群体进行多态筛选, 结果筛选到一个与耐淹涝性状连锁的标记RM219, 验证了耐淹涝性状确实由主效基因Sub1控制, 因此, RM219在水稻耐淹涝育种中具有利用价值。 相似文献
12.
Remo Reggiani Monica Mattana Nicoletta Aurisano Alcide Bertani 《Physiologia plantarum》1993,89(3):640-643
Nitrate present in rice caryopses can be reduced to ammonium and the ammonium subsequently assimilated by the coleoptile during anaerobic germination. All the enzymes of nitrate reduction and ammonia assimilation are present in the coleoptile. The supply of 15 NO3 confirms that the nitrate nitrogen is anaerobically incorporated into amino acids. Under anoxia, nitrate and nitrite reductase activities are increased in the coleoptile by exogenous nitrate. The importance of nitrate utilization during the anaerobic germination of rice caryopses is discussed. 相似文献
13.
Three h white light irradiation of etiolated maize seedlings ( Zea mays L. cv. Jubilee) inhibited mesocotyl elongation and caused a sharp decrease in cell wall plastic extensibility as measured by the Instron technique. The plastic extensibility following white light irradiation (3 h) was photomodulated by phytochrome. Although the photomodulation of the plastic extensibility was correlated with growth during 20 h, no such correlation was observed at shorter times. The addition of indole-3-acetic acid to light-inhibited intact seedlings, or seedlings from which the coleoptile and inner leaves were excised, resulted in a stimulation of growth. However, none of the IAA concentrations could reverse light inhibition. The possibility of a correlative relationship between phytochrome, auxin and cell wall extensibility is discussed. 相似文献
14.
Alkaline hydrolysis liberated ferulic and diferulic acid from polysaccharides of the Avena coleoptile ( Avena sativa L. cv. Victory I) cell walls. The amount of the two phenolic acids bound to cell walls increased substantially at day 4–5 after sowing, when the growth rate of the coleoptile started to decrease. The level of these acids was almost constant from the tip to base in 3-day-old coleoptiles, but increased toward the basal zone in 4- and 5-day-old ones. The ratio of diferulic acid to ferulic acid was almost constant irrespective of coleoptile age and zone. An increase in the amount of ferulic and diferulic acids bound to cell wall polysaccharides correlated with a decrease in extensibility and with an increase in minimum stress-relaxation time and relaxation rate of the cell wall. The level of lignin in the cellulose fraction increased as coleoptiles aged, but this increase did not correlate with changes in mechanical properties of the cell walls. These results suggest that ferulic acid, ester-linked to cell wall polysaccharides, is oxidized to give diferulic acid, which makes the cell wall mechanically rigid by cross-linking matrix polysaccharides and results in limited cell extension growth. In addition, it is probable that the step of feruloylation of cell wall polysaccharides is rate-limiting in the formation of in-termolecular bridges by diferulic acid in Avena coleoptile cell walls. 相似文献
15.
Jia-Fu Jiang Yun-Yuan Xu Kang Chong 《植物学报(英文版)》2007,49(2):230-237
Lectin plays an Important role In defense signaling In plants, but its function In plant growth and development is not well known. Previously, we cloneds rice (Oryza sativa L.) gene OsJAC1 encoding s msnnose-blndlng Jscslln-relsted lectln, and found that OsJAC1 was Jssmonlc acid (JA) Inducible. Here we cloned the promoter of OsJAC1, and GUS activity was detected In young roots, coleoptlles, sheaths, leaves, nodes of stems, stems, rschlses, pistils, stsmens and lemmss of OsJAC1::GUS trsnsgenlc rice, suggesting that OsJAC1 Is s constitutive expression gene In rice. Moreover, OsJAC1-overexpressed (Ubi::OsJAC1) rice showed dwarfism with shorter coleptlles resulting from the failure of cell elongation of coleoptlles. In addition, compared with coleoptlles of wild-type plants, those of OsJAC1 overexpresslon rice were more sensitive to JA treatment. These data revealed that, besides Its roles in defense response, lectin plays an Important role in rice growth and development. 相似文献
16.
Mohammad Masud Parvez Kazuyuki Wakabayashi Takayuki Hoson Seiichiro Kamisaka 《Physiologia plantarum》1996,96(2):179-185
The growth rate of maize ( Zea mays L. cv. Cross Bantam T51) coleoptiles in the dark was highest at the basal zone and decreased towards the tip. Growth was strongly inhibited by white fluorescent light (5 W m−2 ), especially in the basal zone of coleoptiles. Light irradiation caused an increase in the values of stress-relaxation parameters, the minimum stress-relaxation time and the relaxation rate and a decrease in the extensibility (strain/stress) of the cell walls at all zones. In addition, during growth, the accumulation of osmotic solutes was strongly inhibited by white light irradiation, resulting in an increased osmotic potential. The influences of white light on the mechanical properties of the cell wall and the osmotic potential of the tissue sap were most prominent in the basal zone. Significant correlations were observed between the increment of coleoptile length and the mechanical properties of the cell walls or the osmotic potential of the tissue sap and osmotic solutes content. Furthermore, light inhibited the outward bending of split coleoptile segments. These facts suggest that white light inhibits elongation of maize coleoptiles by modifying both the mechanical properties of the cell walls and cellular osmotic potential, which control the rate of water uptake. 相似文献
17.
L. Magneschi R. L. Kudahettige A. Alpi & P. Perata 《Plant biology (Stuttgart, Germany)》2009,11(4):561-573
Rice ( Oryza sativa L.) seeds can germinate under anoxia and can show coleoptile elongation. The anoxic coleoptile is usually longer than aerobic coleoptiles. Although several hypotheses have been proposed to explain the ability of rice to elongate coleoptiles under anoxia, conclusive experimental evidence explaining this physiological trait is lacking. In order to investigate whether metabolic and molecular markers correlate with anoxic coleoptile length, we screened 141 Italian and 23 Sri Lankan rice cultivars for their ability to elongate coleoptiles under anoxia. Differences in anoxic coleoptile length were used to evaluate whether a correlation exists between coleoptile length and biochemical and molecular parameters. The expression of genes coding for glycolytic and fermentative enzymes showed a very low correlation with anoxic coleoptile length. Although differences were found in carbohydrate content between the varieties tested, this parameter also does not appear to be critical in terms of coleoptile elongation. Efficient ethanol fermentation does, however, correlate well with the elongation of coleoptiles under anoxic conditions. 相似文献
18.
Segments of maize (Zea mays L.) coleoptiles demonstrate plastic cell-wall extensibility (Epl) as operationally defined by the amount of irreversible strain elicited by stretching living or frozen-thawed tissue under constant load in an extensiometer (creep test). Changes of Epl are correlated with auxin- and abscisic-acid-dependent growth responses and have therefore been causally related to hormone-controlled cell-wall loosening. Auxin induces an increase of Epl specifically in the outer epidermal wall of maize coleoptiles which is considered as the growth-limiting wall of the organ. However, detailed kinetic measurements of load-induced extension of frozen-thawed coleoptile segments necessitates a revision of the view that Epl represents a true plastic (irreversible) wall deformation. Segments demonstrate no significant irreversible extension when completely unloaded between loading cycles. Moreover, Epl can be demonstrated repeatedly if the same segment is subjected to repeated loading cycles in the extensiometer. It is shown that these phenomena result from the hysteresis behaviour of the cell wall. Stress-strain curves for loading and unloading form a closed hysteresis loop, the width of which represents Epl at a particular load. Auxin-treatment of segments leads to a deformation of the hysteresis loop, thereby giving rise to an increase of Epl. These results show that the creep test estimates the viscoelastic (retarded elastic) properties rather than the plastic properties of the wall.Abbreviations Etot, Eel, Epl total, elastic, and plastic cell-wall extensibility as defined by the standard creep test - L loadSupported by Deutsche Forschungsgemeinschaft (SFB 206). 相似文献
19.
Abstract. Elongation responses of intact coleoptiles of rice (Oryza sativa L. ev. Sasanishiki) explants to various gases were examined under submerged conditions in continuously flowing gas-saturated incubation media. Reduced O2 tension (hypoxia). CO2 and especially C2H4 significantly stimulated coleoptile elongation; the optimal concentrations of O2, CO2 and C2H4 when applied singly were 0.07 m3 m-3, 0.10 m3 m-3, and 3 cm3, respectively. However, in addition to these gases other as yet unknown factors were involved in the enhanced elongation of rice coleoptiles under water. The actions of CO2 and C2H4, unlike that of hypoxia, were accompanied by increases in dry weight of the coleoptiles. The effect of C2H4 occurred independently of O2 concentrations, whereas that of CO2 occurred above 0.08 m3 m-3O2. Maximum elongation of rice coleoptiles under submerged conditions was obtained when the flowing medium was saturated with a gas mixture containing 0.10 m3 m-3 O2, 0.10 m3 m-3 CO2 and 10 cm3 m-3 C2H4, greatly surpassing elongation in static media. However, elongation in static media was greater than that in a closed atmosphere. The intercellular C2H4 concentration in explants growing in static media was higher than that in a closed atmosphere. These results showed that the coleoptile elongation of rice seedlings under water may be regulated by the accumulation of CO2 and C2H4 in and around the seedlings under hypoxic conditions. 相似文献
20.
Ruanjaichon V. Sangsrakru D. Kamolsukyunyong W. Siangliw M. Toojinda T. Tragoonrung S. Vanavichit A. 《Russian Journal of Plant Physiology》2004,51(5):648-657
Small GTP-binding proteins play critical roles in signal transduction in mammalian and plant systems. In this study, sequence variation of a small GTP-binding protein identified in the subgenomic region was analyzed. The major quantitative trait locus (QTL) controlling submergence tolerance on the 6.5-cM region of chromosome 9 was previously mapped, sequenced, and annotated. One of the most interesting candidate genes located in this QTL was a 5.2-kb sequence, which included a coding sequence consisting of two exons and a promoter. The deduced amino acid sequence corresponded to a 24.8 kD protein consisting of 226 amino acids, with 98% identity to RGP1, a small GTP-binding protein involved in a signal pathway responding to hormones, such as cytokinin and ethylene. According to the amino acid sequence, a putative small G-protein was classified as a small Ras-related GTP-binding protein. DNA gel blot analysis showed that the putative gene encoding the Ras-related GTP-binding protein was present as a single copy in the rice genome. Comparison of genomic sequences from several rice cultivars tolerant to submergence identified single nucleotide polymorphisms located in the TATA box of the Ras promoter region. Linkage analysis showed that the putative gene for GTP-binding protein was tightly linked to the peak of the QTL previously mapped on the long arm of chromosome 9. The single strand conformation polymorphism of the putative GTP-binding protein gene can be used for allele discrimination and marker assisted selection for tolerance to flash flooding. 相似文献