首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
张浩斌  徐金江  李静猷  刘渝  刘晓峰  孙杰 《含能材料》2015,23(12):1231-1234
利用原位粉末X射线衍射法和原位红外光谱法研究了硝基胍(NQ)晶体的热膨胀。结果表明, 在30~160 ℃内硝基胍a-、b-、c-轴的平均膨胀系数分别12.9×10-6,-10.1×10-6-1和145.5×10-6-1, 显示NQ晶体热膨胀呈明显各向异性,且b轴呈负膨胀。NQ的各向异性热膨胀由其各向异性分子间作用引起。随温度升高NQ分子间氢键减弱,分子间距离增大,减少了NQ分子沿b轴的空间位阻,从而在分子间作用力下沿b轴收缩,导致了负膨胀。该结果有助于理解炸药分子堆积对其物理性能的影响。  相似文献   

2.
炸药晶体在热刺激作用下的热膨胀特性是导致混合炸药应力增加及长贮时结构损伤的重要原因之一,采用原位X-射线粉末衍射技术研究了[2,2'?联(1,3,4?噁二唑)]?5,5'?二乙酰胺(ICM?101)的热膨胀特性,基于Rietveld全谱拟合结构精修原理,获得了ICM?101的热膨胀系数.结果表明,ICM?101在热场作用下表现出明显的可逆各向异性热膨胀,在30~170℃温度范围内晶胞参数a、b、c轴和体积V的热膨胀系数分别为9.19×10-5,-9.22×10-6,5.21×10-5℃-1和13.8×10-5℃-1,其中b轴表现出负膨胀特性.基于分子光谱技术结合理论计算方法,对ICM?101在不同温度下晶胞堆积结构及其与热膨胀特性的关联展开研究,认为热刺激下ICM?101分子的四元环结构发生压缩变形使晶胞沿着b轴方向被压缩是导致晶胞在b轴呈现线性负膨胀的重要原因,同时与其它炸药晶体热膨胀特性对比,分析了晶胞堆积对炸药晶体结构热稳定性的影响.具有较强氢键作用的层状堆积结构的炸药晶体的热膨胀各向异性更明显,其中当分子与分子间的相对夹角大于100°时,层内氢键网络对层间作用影响不大,反之,则会对a、b、c轴方向产生影响,限制其热膨胀.  相似文献   

3.
喷雾结晶法制备高堆积密度球形硝基胍   总被引:1,自引:0,他引:1  
为了提高硝基胍(NQ)的堆积密度和流散性,以N-甲基吡咯烷酮作为NQ的溶剂,无水乙醇作为非溶剂,六水硝酸镍作为晶型控制剂,采用喷雾结晶法制备了球形硝基胍晶体。单因素法确定制备高堆积密度球形NQ的最优工艺条件为:室温,溶剂与非溶剂体积比为1∶10,晶型控制剂质量分数为0.5%,喷雾压力为0.6 MPa,超声频率为40 Hz,搅拌速度为450 r·min~(-1),喷雾完毕继续超声震荡搅拌20 min。用标准容器法、扫描电子显微镜(SEM)、差热扫描量热法(DSC)和X-射线衍射仪(XRD)对最优球形NQ进行分析。结果表明:制备的NQ呈球形,堆积密度为1.232 g·cm~(-3),较原料NQ提高0.943 g·cm~(-3),DSC测得分解温度为258.71℃,较原料NQ提高8.03℃。  相似文献   

4.
模压TATB基PBX炸药件晶体取向对膨胀特性的影响   总被引:2,自引:2,他引:0  
炸药件的膨胀特性对其使用性能有重要影响,研究TATB基PBX炸药件晶体取向与膨胀特性的关系,可为控制TATB晶体的形稳性提供基础支撑。采用线膨胀仪测定了颗粒状、片状及原材料TATB晶体所压制药柱沿不同方向的膨胀特性,采用X射线衍射仪和Rietveld全谱拟合精修的方法测定了TATB基PBX炸药件的晶体取向(F),并研究了TATB晶体取向对膨胀特性的影响。结果表明:TATB基PBX药柱存在各向异性膨胀,轴向的膨胀程度约为径向的2倍,膨胀系数(αCTE)与药柱中晶体的取向满足关系αCTE=(7.08+10.37×F)×10-5K-1,药柱的线膨胀系数随晶体取向增大而增大,而不同形貌的TATB晶体所压药柱的取向不同。因此,通过改变晶体形貌可以控制晶体取向,进而抑制药柱膨胀的各向异性,改善TATB炸药的形稳性。  相似文献   

5.
硝基胍分子结构的研究   总被引:4,自引:0,他引:4  
论述了硝基胍的单晶制备及分子结构的测定,硝基胍晶体属正交晶系,Fdd2空间群,晶体参数为:a=1.70621(3)nm,b=2.4862(3)nm,c=0.35940(10)nm,V=1.5745(5)nm^3,Z=8,Dc=1.756g.cm^-3,u=1.l60cm^-1,F(000)=864,最终偏离因子R=0.0252,ωR=0.0701。  相似文献   

6.
通过恒温加热失重测定和DSC分析,研究了硝基胍-乙二胺二硝酸盐-硝酸铵-硝酸钾低共熔物分子间炸药(NEAK)的热分解特性,结果表明NEAK与三元低共熔物EAK(乙二胺二硝酸盐-硝酸铵-硝酸钾)R 分解性接近,加入RDX和过量的NQ时,分解速率显著增加。  相似文献   

7.
利用动态差示扫描量热(DSC)实验初步研究了硝基胍的热分解特性,采用Kissinger和Ozawa法计算了其热分解活化能。运用中断回归实验研究了热履历对硝基胍热分解安全性的影响,并用等温DSC实验进行了验证。利用绝热量热仪(ARC)研究了硝基胍的绝热安全性,得到了其初始分解温度,温升速率。结果表明,硝基胍是熔融分解型含能材料,其热分解为自催化反应。热履历显著影响了硝基胍的热分解安全性,降低了其起始分解温度和峰温,使其在固态时就达到较高的热分解速率。在动态DSC实验中,其起始反应温度213.8~249.9℃,峰温215.0~255.2℃,表观活化能为111.6 k J·mol~(-1)和114.2 k J·mol~(-1)。在绝热实验中,其起始反应温度为170.6℃,最大温升速率为1.414℃·min~(-1)。  相似文献   

8.
1-三硝甲基-3-硝基-1,2,4-三唑的晶体结构及性能预估   总被引:1,自引:1,他引:0  
殷欣  马卿  王军  王树民 《含能材料》2017,25(5):437-440
为了获得1-三硝甲基-3-硝基-1,2,4-三唑(TNMNT)的晶体结构并对其性能进行预估,以3-硝基-1,2,4-三唑为原料,通过取代、硝化反应合成出了TNMNT,收率为62%,以无水乙醇为溶剂,用溶剂蒸发法培养得到纯的TNMNT单晶,并采用核磁共振谱、红外光谱与X-射线单晶衍射仪进行了结构表征。用DSC-TG法分析了热稳定性。用Gaussian 09 and EXPLO5(V6.02)程序分别计算了生成焓和爆轰参数。结果表明:TNMNT晶体属于单斜晶系,空间群P21/c,晶体参数为a=6.643(3),b=20.494(7),c=6.698(3),β=94.225(9)°,V=909.4(6)3,Z=4,Dc=1.922 g·cm~(-3),μ=0.190 mm~(-1),F(000)=528.0。5℃·min-1升温速率下,TNMNT的热分解峰温为158.3℃。它的标准生成焓为210.9 kJ·mol~(-1),爆速为9023 m·s~(-1),爆压为35.5 GPa。大量分子间和分子内氢键作用的存在使TNMNT分子稳定存在,硝仿基团的引入使TNMNT分子的能量提高。  相似文献   

9.
硝基胍溶液的热分解性能及动力学   总被引:1,自引:1,他引:0  
硝基胍(NQ)在进行运输和储存时,通常采用水作稳定剂。为研究硝基胍加水后的热分解行为,借助差示扫描量热仪(DSC)研究了其在动态和等温条件下的分解情况。结果表明,硝基胍溶液在动态和等温模式下均显示一个放热峰,其平均比放热量分别为311 J·g~(-1)和305 J·g~(-1)。基于Friedman法计算得知动态模式下的活化能为84~78 kJ·mol~(-1),等温模式下活化能为86~78 kJ·mol~(-1),且数值变动很小;表明其热解过程可用单步机理描述。根据等温模式下的钟型放热速率曲线,判断其热分解属于单步自催化机理;进而采用包含引发反应的自催化模型,对等温数据进行非线性拟合得到了其分解反应速率表达式,且自催化机理的计算结果与动态DSC的实测数据一致性好,证明该模型可靠。  相似文献   

10.
以硝基胍(NQ)为原料、100%硝酸/20%发烟硫酸/硝酸铵为硝化体系,经硝化反应合成了1,2-二硝基胍(DNG)。用IR、1H NMR、13C NMR、MS表征了DNG的结构。研究了影响DNG产率和正交实验的因素。用TG和 DSC研究了DNG的热分解行为。结果表明,硝化反应的优化条件为n(HNO3)n(NQ)n(NH4NO3)=15 2 1,V(H2SO4)V(HNO3)=1.25 1,反应时间为8 h,反应温度为10 ℃。优化条件下DNG产率达61.76%。DNG的 DSC曲线峰温为182.83 ℃,显示DNG有良好的热稳定性。  相似文献   

11.
正1.发现了TKX-50的一个热致新相(meta-TKX-50)和一个剪切产生的新相(γ-TKX-50)。meta-TKX-50形成的温度在180℃附近,与TKX-50相比,NH_3OH~+的N—O更趋向于平行于晶胞b轴。γ-T KX-50源于TKX-50沿(010)/[101]或(010)/[101]方向的剪切。这样,TKX-50在常压下可存在三个相。2.分析发现了羟铵盐晶体中的强分子间氢键对其性能影响的两面性。一方面,强分子间氢键是导致其高堆积系数和高晶体密度的根本原因,尽管羟铵的  相似文献   

12.
3,4-二氨基乙二肟(DAG)的制备、晶体结构及热行为   总被引:3,自引:2,他引:1       下载免费PDF全文
通过乙二醛、盐酸羟胺在NaOH溶液中脱水反应,制备了3,4-二氨基乙二肟(DAG),并培养出DAG的单晶。利用X射线单晶衍射分析、元素分析和傅里叶变换红外光谱分析对其进行结构表征。测试结果表明:晶体属单斜晶系,空间群P21,晶胞参数:a=0.6763(8)nm,b=0.3578(4)nm,c=0.9658(12)nm,β=90.78(2),°V=0.2338(5)nm3,Z=2,Dc=1.678 g.cm-3,F(000)=124,μ(Mo Kα)=0.146 mm-1,最终R因子[I>2σ(I)]:R1=0.0403,wR2=0.1098,R因子(全部所有数据):R1=0.0422,wR2=0.1122。DAG分子呈平面构型,为反式结构,其晶体为黄色针状晶体,分子间存在三种氢键,形成三维空间网状结构,提高了分子的稳定性。用TG-DTG和DSC技术研究了DAG的热分解过程,在10℃.m in-1的升温条件下,其熔点为203.5℃,在209~212℃、212~240℃之间发生两步剧烈分解反应,至240℃完全分解。  相似文献   

13.
HNS与NQ的表面能研究   总被引:1,自引:1,他引:0  
采用毛细渗透法和Washburn方程测定了六硝基芪(HNS)、硝基胍(NQ)和吸收药片在10%乙二醇、乙醇、30%乙二醇、水中的接触角,并通过Young方程及表面化学理论计算了它们的表面能及其分量.结果表明,其值与理论计算值相符合,NQ有较高的表面能为58.31 mJ·m<'-2>,其中极性分量占主要成分为54.73 ...  相似文献   

14.
以氨基硝基胍(ANQ)和甲醛为原料,合成了新的化合物亚甲氨基硝基胍(MANG),并对其反应过程进行了分析。采用X-射线单晶衍射仪分析了MANG的晶体结构,结果表明,其晶体属于正交晶系,空间群为P_(nn)2,每个晶胞中包含4个MANG分子,晶体密度为1.63 g·cm~(-3)。通过差示扫描量热法(DSC)和热重分析技术(TG-DTG)研究了MANG的热行为,其只呈现一个非常剧烈的放热分解过程。在5℃·min~(-1)的升温速率下,MANG的分解峰温和放热量分别为170.9℃和1440 J·g~(-1)。计算得到MANG的标准摩尔燃烧热和生成焓分别为-1526.09 kJ·mol~(-1)和33.81 kJ·mol~(-1)。用Kamlet-Jacobs方程预估MANG的爆速(7.1 km·s~(-1))和爆压(20.9 GPa)均小于ANQ,但高于三硝基甲苯(TNT)。MANG的撞击感度(7.9 J)低于ANQ(3J)和黑索今(RDX)(7.4 J)。  相似文献   

15.
硝酸氨基胍的分子结构与晶体结构   总被引:1,自引:0,他引:1  
通过氨基胍重碳酸盐与硝酸反应制备了硝酸氨基胍 ,用四圆衍射仪测得了其结构。结果表明 ,该晶体属三斜晶系 ,空间群为P墿,晶体学参数为 :a =0 .6 0 2 8( 1)nm ,b =0 .7344( 1)nm ,c =0 .772 3( 1)nm ;α =10 4.85 0 ( 10 )° ,β =110 .45 0 ( 10 )° ,γ =10 2 .6 6 0 ( 10 )° ;V =0 .2 911( 7)nm3,Z =2 ,Dc=1.5 6 4g·cm-3 ,F( 0 0 0 ) =14 4 ;偏离因子R为 0 .0 32 7。硝酸氨基胍分子中没有独立的双键存在 ,分子内形成了具有大π键的碳正离子 ,并与硝酸根负离子形成离子型化合物  相似文献   

16.
以二氨基呋咱为原料,经氧化、水解、中和和取代反应合成了3,4-双(3-硝基呋咱-4-氧基)呋咱,并采用红外光谱、核磁共振、元素分析,X射线单晶衍射等进行了结构表征。晶体属于单斜晶系,空间群为P2_1/c,a=15.256(3)A,b=11.579(3)A,c=14.981(3)A,β=117.624(4)°,M_r=328.14,V=2344.7(9)A~3,Z=8,D_c,=1.859 g·cm~(-3),F(000)=1312,μ=0.177 mm(~-1),S=1.012,R_1=0.0433,wR_2=0.0987。晶体结构分析结果表明,在不对称单元中存在两种构象不同的分子,分子中含有大量的弱键,能够提高化合物的密度和热稳定性。采用差示扫描量热法和热重分析研究了3,4-双(3-硝基呋咱-4-氧基)呋咱的热分解过程,在10℃·min~(-1)的升温条件下,其熔点为72.9℃,在245~346℃之间存在明显放热过程。  相似文献   

17.
以无水甲醇为溶剂,在10~15℃下采用溶剂挥发法培养并首次获得了LLM-208的单晶,运用Hirshfeld表面理论方法研究了晶体内分子间的相互作用,利用Kissinger法、Flynn-Wall-Ozawa法和Starink法计算LLM-208的热分解动力学参数。结果表明:LLM-208在130 K的晶体密度为1.895 g·cm~(-3),298 K下其晶体密度为1.848 g·cm~(-3),属于单斜晶系,C2空间群,晶胞参数为a=19.225(5),b=5.5779(15),c=6.4176(17),β=108.551(5)°,V=909.4(6)~3,Z=2,μ=0.192 mm~(-1),F(000)=376。Hirshfeld表面分析LLM-208晶体内占主导的近相互作用分别为O…H、H…O作用(35.0%),O…O作用(22.3%),以及F…O、C…F、F…F作用(12.5%)。LLM-208在Kissinger法、Flynn-Wall-Ozawa法和Starink法下的活化能分别为112.28,114.49,112.49 k J·mol~(-1),Kissinger法计算得指前因子为10~(21.30)s~(-1)。  相似文献   

18.
合成了三硝基间苯三酚一铵盐NH4(H2TNPG),并对其进行了元素分析及红外表征。利用X射线单晶分析测定了其晶体结构,晶体属于单斜晶系,空间群为C2/c,晶体学数据为:a=9.307(2),b=21.144(6),c=9.797(2),β=99.56(3)°,V=1901.0(8)3,Z=8。该化合物是由一个铵根离子与一个一价的三硝基均苯三酚负离子相结合而形成的离子型化合物,分子中存在的大量氢键及铵根离子与三硝基均苯三酚负离子之间的静电引力使得该化合物具有较高的热稳定性和较低的感度。用DSC、TG-DTG技术研究了标题化合物的热分解,研究结果表明:在10℃·min-1的升温速率下,标题化合物只有一个剧烈的放热分解过程,该过程发生在219.2~234.3℃之间,分解产物主要是气体产物。感度测试结果表明,该化合物对外部刺激钝感。  相似文献   

19.
采用TG-DSC方法研究了硝基胍(NQ)、高氯酸铵(AP)、高氯酸钾(KP)、NQ/AP和NQ/KP的热分解特性。结果表明:NQ/AP的热分解失重分2个阶段,第1阶段是NQ的热分解,第2阶段是AP的热分解;NQ/KP的热分解失重分3个阶段,第1阶段是NQ的热分解,第2阶段和第3阶段分别对应KP的热分解和其产物KCl的熔化挥发;AP对NQ的热分解几乎没有影响;KP提高了NQ的热分解峰温,活化能降低了约60 k J/mol;NQ的存在使得KP的热分解活化能降低了约110 k J/mol,使AP活化能升高了约340k J/mol。  相似文献   

20.
侯可辉  刘祖亮 《含能材料》2013,21(6):726-729
合成出1-(2′,4′,6′-三硝基苯基)-4,5-二硝基咪唑,研究了其热性能和晶体结构。其熔解温度为228.98 ℃,分解温度为339.73 ℃,热重变化范围为200~440 ℃, 总共失重98%; 其晶体属于斜方晶系,空间群为P212121, 晶胞参数为: a=8.2370 (16), b=12.791(3), c=12.916(3), Z=4 , V=1360.8(5)3 , d=1.802 g·cm-3. 根据晶体密度计算的爆速和爆压分别为8296.48 m·s-1和 31.00 GPa。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号