首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 296 毫秒
1.
为降低有源电力滤波器(APF)开关器件耐压水平,充分发挥低压大电流开关器件和装置容量潜能,节省APF与网侧线路相连接的升压变压器成本,并有效降低直流稳压电容的额定电压,提出一种新型的基于变压器谐波磁势平衡的有源电力滤波方法。该方法将有源电力滤波装置接于变压器二次侧绕组抽头中间,使该装置产生的谐波电流磁势在变压器二次侧与负载谐波电流磁势相互抵消,从而使得网侧电流谐波含量显著降低。详细分析了运用该谐波磁势平衡在变压器二次侧绕组进行滤波的数学原理,并对配电网侧常用的10 k V/380 V Y/△及△/Y变压器进行了负载谐波电流滤波仿真,并通过实验验证了该滤波方法的可行性。  相似文献   

2.
廉玉欣  杨世彦  杨威 《电工技术学报》2021,36(18):3957-3968
为提高多脉波整流器的谐波抑制能力,提出一种基于非常规平衡电抗器的直流侧谐波抑制方法.在常规平衡电抗器的基础上,增加一次侧抽头数和二次绕组,并通过一次侧抽头控制电路和二次侧整流电路与负载相连,进而提高整流器输出电压脉波数和输入电流的阶梯数,降低了输入电流总谐波畸变率(THD).以输入线电流THD最小为目标,分析非常规平衡电抗器的工作模式和参数优化设计方法.实验结果验证了理论分析的正确性,应用非常规平衡电抗器后,并联型整流器的输出脉波数可从12脉波增加至24、36、48脉波,输入线电流THD由15.15%降低至3.81%,谐波抑制能力得到显著提升.  相似文献   

3.
为满足整流器高电压输出和提升串联12脉波整流器谐波抑制能力,提出一种使用直流侧混合脉波倍增技术的低谐波串联36脉波整流器。基于隔离型串联12脉波整流器,在其直流侧设置混合电压谐波注入电路且负载端并联滤波电容,可同时抑制交、直流侧谐波,实现低谐波运行。混合谐波注入电路参与调制两个整流桥间电流和电压波形,最终使交流侧输入电压阶梯数由12提升至36。该文分析所提36脉波整流器工作机理,设计注入变压器最优电压比、功率管IGBT导通角及其控制电路,研究正常状态下和IGBT故障下整流器的运行特性,并使用硬件在环(HIL)测试系统验证了理论分析的正确性。实验结果表明,所提整流器器件利用率高、谐波含量低,IGBT故障下具备鲁棒性强、输出电压增益高的特点,可应用于高电压、高功率变流场合。  相似文献   

4.
为了有效抑制常规双反星形整流器的输入电流谐波和输出电压脉动,提出一种基于全波平衡电抗器的双反星形12脉波整流器。所提出的12脉波整流器由常规的双反星形整流器和全波平衡电抗器组成。全波平衡电抗器中含有带副边绕组的平衡电抗器和辅助单相全波整流器,辅助单相全波整流器通过从平衡电抗器的副边绕组提取方波电流来增加2个三相半波整流桥的输出电流和电压模态,然后依据交直流两侧电流和直流侧电压的关系,将双反星形整流器的脉波数从6倍增到12,显著抑制了输入电流谐波和输出电压脉动。因流过辅助单相全波整流器的电流仅为负载电流的6.69%,相较于现有基于抽头平衡电抗器的脉波倍增方法,所提方法除具备电路结构简单可靠、易于实现和成本低廉等优点外,还具有更小的附加导通损耗,更适用于低压大功率工业场合。研制了一台功率为1.1 kW的实验样机,验证了理论分析的正确性和该方法的有效性。  相似文献   

5.
常规抽头式平衡电抗器技术可有效抑制大功率多相整流器的网侧电流谐波,但负载电流全部流经抽头二极管。这一情况致使二极管导通损耗严重,制约了该技术的应用。为此,提出一种结构简单、可靠性高的谐波抑制方法。该方法从常规六相整流系统的直流侧入手,在常规平衡电抗器上增设一个中心抽头式的绕组,通过合理配置其匝比,并在此绕组与负载之间串接单相全波整流器即可实现。利用该方法对原整流系统电流进行调制,可使原整流器从12脉波工作状态转变为24脉波工作状态。该方法不仅可取得与两抽头变换法一样的网侧电流谐波抑制效果,与两抽头变换法相比,还可使单相全波整流器二极管的平均电流不超过负载电流的2%,即可有效解决了传统抽头变换法因高损耗带来的问题。理论分析、仿真及实验结果均验证了所提方法的正确性和有效性。  相似文献   

6.
为抑制串联型多脉波整流器的输入电流谐波,提出一种直流侧电压谐波注入法。该方法通过谐波注入电路产生6倍电网电压频率的电压谐波,并通过谐波注入变压器注入串联型多脉波整流器的直流侧,使整流器输入电流的波形近似为正弦;借助开关函数法,分析移相变压器输入电压24阶梯波的形成过程;从移相变压器输入电压总谐波畸变率(THD)值最小角度出发,设计注入变压器的最佳匝比。仿真和实验结果表明,使用谐波注入电路后,整流器的输入功率因数由97.43%提高到98.94%,电能质量得到明显提高;移相变压器的输入电压由12阶梯波变为24阶梯波,其THD值由9.74%降到3.34%,输入电流THD值由7.62%降到2.65%,整流器的谐波抑制性能得到显著提升。  相似文献   

7.
为描述多脉波整流器断相时的故障特征,分析了断相对使用直流侧谐波抑制方法的多脉波整流器的影响。以使用两抽头变换器的24脉波整流器和使用有源平衡电抗器的12脉波整流器为例,分析了正常工作和断相运行时整流器各处的电压和电流特征。通过理论分析和实验验证,结果表明断相会导致两整流桥输出电压的瞬时差等于零,进而使抽头变换器和有源平衡电抗器不能产生环流去抑制输入电流谐波;同时,断相运行也将使负载电压纹波显著增大,即断相将导致输入侧和负载侧电能质量恶化。相关结论可为并联型多脉波整流器断相故障的分析和实时处理提供理论依据。  相似文献   

8.
传统无源式抽头平衡变换器虽然可以降低12脉波整流器的网侧电流总谐波畸变率,但其抽头与负载回路串联引起的高损耗问题严重制约了该方法在大功率整流场合的应用。为此,提出一种损耗低、易于实现的无源谐波抑制方案。该方案仅需在12脉波整流器的直流侧配置两个具有对称结构的双抽头平衡变换器,利用辅助二极管调制原理产生的方波电流,将整流器的脉波数由12倍增至24倍。与无源式两抽头平衡变换器相比,所提方案在实现相同的谐波抑制效果前提下,降低辅助二极管电流有效值至2%。所提方案具有鲁棒性强、损耗低和易于实现的优点,更适合应用于低压大电流场合。  相似文献   

9.
提出了一种具有特殊接线方案的改进型感应滤波高压直流输电系统,其2个换流变压器的公共绕组并联后接1套全调谐感应滤波器组,且滤波器组中不含有5、7次滤波器,仅为11、13次双调谐滤波器,大幅减少了滤波器和开关等设备的投入。分析了改进型感应滤波高压直流输电系统的谐波传递特性,分析结果表明此系统同样能够有效地将谐波电流屏蔽于换流变压器的阀侧绕组,减小网侧绕组的谐波电流。最后对一背靠背的12脉波改进型感应滤波直流输电系统试验平台进行试验测试,测试结果验证了理论分析的正确性,说明了改进型感应滤波直流输电系统的可行性。  相似文献   

10.
为提高多脉波整流器的直流侧无源谐波抑制能力,研究了基于两抽头变换器的24脉波整流器直流侧谐波抑制机理。根据抽头变换器的结构及安匝平衡原理,分析了抽头变换器的功能及工作模式,研究了抽头变换器的工作模式对整流桥输出电流、整流器输入电流及负载电压的影响,给出了抽头变换器变比的理论最优值。理论分析及实验结果表明,抽头变换器的端电压会使其所接的两个二极管交替导通,对整流桥输出电流进行调制,进而产生环流,该环流流经交流侧时会抵消原输入电流中的12k±1(k为奇数)次谐波。另外,抽头变换器所接的两个二极管的交替导通,会在负载上产生附加电压,附加电压的存在可以显著降低负载电压的纹波系数。相应的实验结果验证了理论分析的正确性。  相似文献   

11.
大功率整流装置在城市轨道交通供电系统中广泛运用,其产生的谐波会对公共电网以及城轨牵引供电系统造成危害.24脉波整流机组网侧、直流侧谐波含量比12脉波整流机组少很多,但设备成本高.如果采用在12脉波整流机组网侧与直流侧分别连接滤波器的方法,能取得24脉波整流机组相近的效果,会节省大量的投资.分析了12、24脉波整流机组工作原理,24脉波谐波相消及滤波器设计原理.利用MATLAB/Simulink搭建24脉波整流机组和网侧、直流侧分别添加阻基波滤波器和单调谐滤波器的12脉波整流机组仿真模型,并对电流谐波进行傅里叶级数分析.结果表明,改善后的12脉波整流机组有效地减少了网侧、直流侧谐波含量,达到了24脉波整流机组相近的消谐效果,对城市轨道交通牵引供电系统具有重要的参考意义.  相似文献   

12.
联接云南电网与南方电网主网的鲁西背靠背直流异步联网工程异步联网工程投产初期,广西侧送出交流线路受故障影响仅剩一回,随后广西侧母线电压和输出电流中出现了频率为1 270 Hz的谐波分量,引起柔性直流单元换流变压器分接开关频繁动作,最终导致柔性直流单元跳闸。首先,从鲁西背靠背直流异步联网工程高频谐振事件入手,分析大容量模块化多电平换流器(modular multilevel converter,MMC)与交流系统的谐振机理;接着,给出了MMC谐波阻抗的计算方法,利用阻抗分析法分析了高频谐振的条件,并提出MMC的控制结构改进方法,有效抑制了其输出电流的高频谐波分量;最后,通过PSCAD/EMTDC仿真对谐振事故现象进行了复现,证明了所提抑制策略可以实现对高频谐波谐振的有效抑制。  相似文献   

13.
提出了一种基于感应滤波技术的节能滤波型整流变压器及其12脉波整流系统,重点解决现有整流变压器及其系统谐波污染严重、损耗大及效率核算困难等难题。该整流变压器负载绕组采用Y/△结构以抑制5、7次特征谐波,通过滤波绕组及其感应滤波装置对11、13次谐波进行治理与隔离。基于现有的感应滤波技术及其实现条件,新型整流系统谐波抑制效果优良,并可极大降低变压器铁芯的谐波磁通,具有节能的效果。在方案介绍的基础上,重点对新型整流系统的感应滤波技术、效率核算及无功补偿引起的谐波放大等关键技术问题进行分析与研究。仿真结果表明其相关技术问题可以有效解决,且谐波抑制和节能效果良好。  相似文献   

14.
多脉波整流器以供电质量高、网侧电流畸变小等优点,被广泛应用于电解铝及地铁直流牵引供电系统中。在基于整流变压器原边三角形延长接法的24脉波整流系统基础上,提出实现48脉波整流系统的方法;通过数学计算得到实现理想48脉动整流时抽头电抗器的抽头变比;建立了MATLAB仿真模型,对环流、网侧电流与24脉波整流进行对比分析。仿真结果表明:通过设置合理的抽头变比,利用抽头电抗器可以实现理想的48脉波输出,并可以消除特定次网侧电流谐波,有效降低网侧电流总谐波畸变率。  相似文献   

15.
基于基波磁通补偿的串联混合型APF滤波特性分析   总被引:2,自引:0,他引:2  
在基于基波磁通补偿的串联混合型有源电力滤波器(APF)中,由脉宽调制逆变器实现了一个受控基波电流源.串联变压器一次侧的系统电源与系统阻抗、无源滤波器和非线性负载共同作用,使串联变压器二次侧端口呈现一个谐波干扰电压,导致逆变器输出电流中含有一定谐波,影响了滤波器的滤波效果.文中以脉宽调制逆变器为核心,建立了滤波器的数学模型,并对其滤波特性进行了分析.提出了改善其滤波效果的3项有效措施,即适当增大逆变器输出滤波电感、合理选择串联变压器原副方变比、采用电压前馈控制技术.设计了一套基于数字控制的10 kVA APF样机,实验结果证明了原理分析的正确性.  相似文献   

16.
12脉波整流电路在直驱型风力发电系统中的应用研究   总被引:1,自引:0,他引:1  
描述了适用于直驱型风力发电系统整流变换的12脉波整流电路。该电路拓扑中采用两个六脉波整流桥串联,并通过移相变压器实现12脉波输出。其交流侧可以得到THD值小于3%的正弦电流。该拓扑结构只使用无源器件,并且在达到同样性能的前提下比其他整流电路所用器件少很多,降低了成本。此外,与其他多脉波整流器相比,可以附加一个额外的低功率谐波注入电路以提高该拓扑结构抑制谐波的性能。  相似文献   

17.
常规12脉波整流器会对电网造成大量谐波污染。为同时提高整流器交、直流侧电能质量,提出了一种直流侧带混合谐波抑制电路(Hybrid Harmonic Suppression Circuit, HHSC)的24脉波整流器。所提整流器由常规12脉波整流器、抽头变换器(Tapped Inter-Phase Converter, TIPC)和补偿电路(Compensation Circuit, CC)组成。TIPC的输出端与负载串联,直接调制整流桥的输出电流和电压。CC与负载并联,间接调制整流桥的输出电流,然后根据交、直流两侧电流关系和直流侧电压关系,最终使整流器输入电流接近正弦波,输出电压由12脉波倍增至24脉波。该方法仅需小容量(仅为输出功率的2.65%)的HHSC即可有效降低输入电流谐波和输出电压纹波,具有高谐波抑制性能、低谐波抑制代价等优点。在Matlab/Simulink中搭建仿真模型,验证了所提方法的正确性和有效性。  相似文献   

18.
提出了一种应用于电动汽车一体化充电系统中的单相PWM整流有源滤波的控制方法,以抑制充电中单相整流电路的直流电压二次纹波。在单相电网电压充电时,这种控制方法能通过控制电机驱动器电路,复用其中的两相同时进行单相整流和有源滤波,在实现整流器单位功率因数运行、稳定输出直流电压的同时,减小直流侧电压的二次纹波,减小网侧输入电流的总谐波畸变率。对单相整流直流侧电压二次纹波的产生机理、有源滤波电路的拓扑结构、单相整流和有源滤波的控制原理和方法进行了详细地分析。最后搭建输入电压峰值110 V,输出直流电压220 V,负载等效电阻100Ω的仿真模型,通过仿真和实验结果验证了所提控制方法的可行性。  相似文献   

19.
对2012年12月15日楚雄换流站发生的极I低端阀组M型避雷器损坏故障进行了分析并对故障工况下的24次谐波回路特性进行了研究。研究结果表明:此次故障中极I高、低端换流变分接头档位间较大的差别将导致回路中24次谐波含量的增加,同时由400 kV母线等效对地电容、换流器内电感和平波电抗器组成的串联回路将进一步放大回路中各点的24次谐波电压幅值,上述两个方面的原因导致M型避雷器对地电压升高至388 kV以上,吸收能量超过了其标称吸收能量,从而使避雷器发生损坏。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号