首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
MLN4924 is a potent and selective small-molecule inhibitor of NEDD8-activating enzyme, which showed antitumor effect in several types of malignant tumor types. However, the mechanism of action of MLN4924 in acute myeloid leukemia (AML) requires further investigation. Real-time fluorescent quantitative polymerase chain reaction (RT-qPCR) was conducted to detect the mRNA levels of genes. Gene expression was knocked down by short hairpin RNA (shRNA). Moreover, the protein expression was detected by Western blotting (WB) assay. The proliferation and apoptosis of AML cells were measured by Cell Counting Kit-8 (CCK8) assay and flow cytometry (FCM). In the present study, we observed that the mRNA expression levels of NEDD8, UBA3, UBE2M and RBX1 in AML patients were up-regulated compared with healthy controls, which were correlated with worse overall survival (OS) of patients. Besides, knockdown of UBA3, UBE2M and RBX1 inhibited the NEDDylation of CULs and increased the protein expression of p53 and p21 in MOLM-13 cell line. In AML cells, MLN4924 inhibited cell proliferation, promoted cell apoptosis, and induced cell cycle arrest at the G2/M phase. As revealed by experiments in vivo and in vitro, the NEDDylation of CULs was significantly inhibited and the p53 signaling pathway was activated after MLN4924 treatment. So, we concluded that NEDD8, UBA3, UBE2M and RBX1 may serve as the prognostic biomarkers and novel therapeutic targets for AML. Inhibition of the NEDDylation pathway resulted in an anti-leukemia effect by activating the p53 signaling pathway.  相似文献   

4.
Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL) is triggered by BCR/ABL and SRC family tyrosine kinases. They interact with each other and subsequently activate downstream growth-signaling pathways, including Raf/MEK/ERK, Akt/mTOR, and STAT5 pathways. Although imatinib is the standard treatment for Ph+ leukemia, response rate of Ph+ ALL to imatinib is low, relapse is frequent and quick. Studies have documented the potential anti-tumor activities of curcumin. However, whether curcumin can be used in the therapy for Ph+ ALL remains obscure. Here, we reported that curcumin induced apoptosis by inhibition of AKT/mTOR and ABL/STAT5 signaling, down-regulation of BCR/ABL expression, and induction of the BCL2/BAX imbalance. Curcumin exerted synergetic anti-leukemia effects with imatinib by inhibition of the imatinib-mediated overactivation of AKT/mTOR signaling and down-regulation of BCR/ABL gene expression. In primary samples from Ph+ ALL patients, curcumin inhibited cellular proliferation and down-regulated constitutive activation of growth-signaling pathways not only in newly diagnosed patients but also in imatinib-resistant patients. In Ph+ ALL mouse models, curcumin exhibited synergetic anti-leukemia effects with imatinib. These results demonstrated that curcumin might be a promising agent for Ph+ ALL patients.  相似文献   

5.
Over the past 20 years, survival rates of T‐cell acute lymphoblastic leukemia (T‐ALL) patients have improved, mainly because of advances in polychemotherapy protocols. Despite these improvements, we still need novel and less toxic treatment strategies targeting aberrantly activated signaling networks which increase proliferation, survival, and drug resistance of T‐ALL cells. One such network is represented by the phosphatidylinositol 3‐kinase (PI3K)/Akt axis. PI3K inhibitors have displayed some promising effects in preclinical models of T‐ALL. Here, we have analyzed the therapeutic potential of the Akt inhibitor, triciribine, in T‐ALL cell lines. Triciribine caused cell cycle arrest and caspase‐dependent apoptosis. Western blots demonstrated a dose‐dependent dephosphorylation of Akt1/Akt2, and of mammalian target of rapamycin complex 1 downstream targets in response to triciribine. Triciribine induced autophagy, which could be interpreted as a defensive mechanism, because an autophagy inhibitor (chloroquine) increased triciribine‐induced apoptosis. Triciribine synergized with vincristine, a chemotherapeutic drug employed for treating T‐ALL patients, and targeted the side population of T‐ALL cell lines, which might correspond to leukemia initiating cells. Our findings indicate that Akt inhibition, either alone or in combination with chemotherapeutic drugs, may serve as an efficient treatment towards T‐ALL cells requiring upregulation of this signaling pathway for their proliferation and survival. J. Cell. Physiol. 226: 822–831, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
Pharmacogenomics of acute lymphoblastic leukemia (ALL) evolved rapidly in the past few years. Majority of recent findings concerns knowledge on key components of ALL treatment, 6-mercaptopurine and methotrexate. Leukemia is the most common cancer affecting children, with ALL comprising 80 % of all leukemia cases. Introduction of treatment protocols composed of several chemotherapeutic agents improved importantly survival in patients with ALL. Nevertheless, ALL is still the leading cause of cancer-related death in children. Interindividual differences in drug responses are an important cause of resistance to treatment and adverse drug reactions. Identifying pharmacogenomic determinants of drugs used in ALL treatment may allow for prospective identification of patients with suboptimal drug responses allowing for complementation of traditional treatment protocols by genotype-based drug dose adjustment.  相似文献   

7.
8.
9.
Gallbladder carcinoma (GBC), an aggressive and mostly lethal malignancy, is known to be resistant to a number of apoptotic stimuli. Here, we report for the first time the pro-apoptosis role of arsenic trioxide (As2O3) in gallbladder carcinoma and identify the contribution of Bcl-2 in the As2O3-induced apoptosis. The treatment of As2O3 in gallbladder carcinoma cells could induce apoptosis in a dose-dependent manner and downregulate the expression of anti-apoptotic protein Bcl-2 at mRNA level. Moreover, Bcl-2 overexpression could protect gallbladder carcinoma cells from As2O3-induced apoptosis, indicating the contribution of Bcl-2 in As2O3-induced apoptosis. Taken together, these results suggest that arsenic trioxide induces gallbladder carcinoma cell apoptosis via downregulation of Bcl-2, which may have important therapeutic implications in gallbladder carcinoma patients.  相似文献   

10.
Sodium valproate (VPA) has been recently identified as a selective class I histone deacetylase (HDAC) inhibitor and explored for its potential as an anti‐cancer agent. The anti‐cancer properties of VPA are generally attributed to its HDAC inhibitory activity indicating a clear overlap of these two actions, but the underlying mechanisms of its anti‐tumor effects are not clearly elucidated. The present study aimed to delineate the molecular mechanism of VPA in potentiating cytotoxic effects of anti‐cancer drugs with focus on inhibition of HDAC activity. Using human neuroblastoma cell lines, SK‐N‐MC, SH‐SY5Y, and SK‐N‐SH, we show that non‐toxic dose (2 mM) of VPA enhanced staurosporine (STS)‐induced cell death as assessed by MTT assay, PARP cleavage, hypodiploidy, and caspase 3 activity. Mechanistically, the effect of VPA was mediated by down regulation of survivin, an anti‐apoptotic protein crucial in resistance to STS‐mediated cytotoxicity, through Akt pathway. Knock down of class I HDAC isoforms remarkably inhibited HDAC activity comparable with that of VPA but had no effect on STS‐induced apoptosis. Moreover, MS‐275, a structurally distinct class I HDAC inhibitor did not affect STS‐mediated apoptosis, nor decrease the levels of survivin and Akt. Valpromide (VPM), an amide analog of VPA that does not inhibit HDAC also potentiated cell death in NB cells associated with decreased survivin and Akt levels suggesting that HDAC inhibition might not be crucial for STS‐induced apoptosis. The study provides new information on the possible molecular mechanism of VPA in apoptosis that can be explored in combination therapy in cancer. J. Cell. Biochem. 114: 854–863, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

11.
12.
Chemo-resistance to anti-cancer drugs is a major obstacle in efforts to develop a successful treatment of acute myeloid leukemia (AML). In this study, we investigate whether resveratrol, a common ingredient in a broad variety of fruits and vegetables, can reverse drug resistance in AML cells. Three doxorubicin-resistant AML cell lines (AML-2/DX30, AML-2/DX100, AML-2/DX300) were prepared via long-term exposure to doxorubicin for more than 3 months. DNA microarray analysis demonstrated that many genes were differentially expressed in the resistant cells, as compared with the wild type AML-2/WT cells. In particular, the expression level of the MRP1 gene was significantly increased in the AML-2/DX300 cells, as compared to that detected in AML-2 cells. Importantly, the resveratrol was shown not only to induce cell growth arrest and apoptotic death in doxorubicin-resistant AML cells, but was also shown to downregulate the expression of an MRP1 gene. Furthermore, resveratrol treatment induced a significant increase in the uptake of 5(6)-carboxyfluorescein diacetate, a MRP1 substrate, into the doxorubicin-resistant AML-2/DX300 cells. The results of this study show that resveratrol may facilitate the cellular uptake of doxorubicin via an induced downregulation of MRP1 expression, and also suggest that it may prove useful in overcoming doxorubicin resistance, or in sensitizing doxorubicin-resistant AML cells to anti-leukemic agents.  相似文献   

13.
Telomeric fusion in pre-T-cell acute lymphoblastic leukemia   总被引:1,自引:1,他引:0  
Summary Telomeric fusion, a rare phenomenon, was observed in malignant cells from the peripheral blood of an 18-year-old male with rapidly progressive pre-T-cell acute lymphoblastic leukemia (ALL). Only two comparable cases, both with B-cell ALL, have been reported with telomeric fusion in neoplasia. All of the leukemic cells examined from our patient had two chromosome abnormalities consisting of partial triplication (trp) of chromosome 2 and a derivative chromosome 3. Approximately a third of the leukemic cells showed in addition telomere-telomere fusions. These involved the telomeric regions of 1p, 2p, 4q, 5q, 7q, 10q, 11q, 12p, 15p, 21p, and Xq and 3p of the derivative (3). The findings in this case suggest that telomeric fusion may function as a mechanism for the development of chromosome rearrangements that may play a role, albeit rarely, in human neoplasia.  相似文献   

14.
15.
16.
We have previously characterized the effects of 2,6-diisopropylphenyl–docosahexaenoamide (DIP–DHA) conjugates and their analogs on the proliferation and progression of breast cancer cell lines. For this study, we investigated the effects of the DIP–DHA conjugate on 2 representative T cell acute lymphoblastic leukemia (T-ALL) cell lines: CEM and Jurkat. Treatment of both cell lines with DIP–DHA resulted in significantly greater inhibition of proliferation and induction of apoptosis than that of parent compounds, 2,6-diisopropylphenol (DIP) or docosahexaenoate (DHA). Treatment of the cells with DIP–DHA resulted in increased activation of caspase-3, and caspase-7. Furthermore, induction of apoptosis in both cell lines was reversed in the presence of a caspase family inhibitor. Treatment with DIP–DHA reduced mitochondrial membrane potential. These observations suggest that the effects are driven by intrinsic apoptotic pathways. DIP–DHA treatment also downregulated surface CXCR4 expression, an important chemokine receptor involved in cancer metastasis that is highly expressed in both CEM and Jurkat cells. In conclusion, our data suggest that the DIP–DHA conjugate exhibits significantly more potent effects on CEM and Jurkat cells than that of DIP or DHA alone. These conjugates have potential use for treatment of patients with T cell acute lymphoblastic leukemia.  相似文献   

17.
18.
19.
Blasts phenotype was determined in 61 children with the acute lymphoblastic leukemia. Non-T-cell acute lymphoblastic leukemia was diagnosed in 51 children. Stages of blasts differentiation were determined with the aid of monoclonal antibodies set using alkaline phosphatase-anti-alkaline phosphatase technique. Blasts in 50 patients belonged to B subpopulation confirmed by the presence of panB CD19 and CD22 antigens. Common antigen was seen in 76.5% of the examined patients with non-T-cell acute lymphoblastic leukemia. Cases of non-T-cell acute lymphoblastic leukemia were divided into 8 subgroups depending on the antigens of B-cells differentiation. An identification of pre-B subgroups of the acute lymphoblastic leukemia indicates heterogenicity of the acute lymphoblastic leukemias in childhood and enables their classification into groups corresponding to the early stages of lymphoblasts maturation.  相似文献   

20.
Relapse following initial chemotherapy remains a barrier to survival in approximately 20% of children suffering from acute lymphoblastic leukemia (ALL). Recently, to investigate the mechanism of relapse, we analysed clonal populations in 27 pairs of matched diagnosis and relapse ALL samples using PCR-based detection of multiple antigen receptor gene rearrangements. These clonal markers revealed the emergence of apparently new populations at relapse in 13 patients. In those cases where the new ‘relapse clone’ could be detected in the diagnosis population, there was a close correlation between length of first remission and quantity of the relapse clone in the diagnosis sample. A shorter length of time to first relapse correlated with a higher quantity of the relapsing clone at diagnosis. This observation, together with demonstrated differential chemosensitivity between sub-clones at diagnosis, indicates that relapse in ALL patients may commonly involve selection of a minor intrinsically resistant sub-clone that is undetectable by routine PCR-based methods. From a clinical perspective, relapse prediction may be improved with strategies to detect minor potentially resistant sub-clones early during treatment, hence allowing intensification of therapy. Together with the availability of relevant in vivo experimental models and powerful technology for detailed analysis of patient specimens, this new information will help shape future experimentation towards targeted therapy for high-risk ALL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号