首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
《Ceramics International》2022,48(11):15414-15421
Ferroelectric photovoltaic (FE-PV) materials have generated widespread attention due to their unique switchable photovoltaic behavior, but suffering from low photocurrent and remanent polarization. Herein, enhanced ferroelectric polarization and switchable photovoltaic in BiFeO3 based thin films were achieved by the optimization of Bi content. The compact and uniform films with few defects were obtained by the control of chemical composition. The remanent polarization increased from 3.4 to 73.9 μC cm?2 showing a qualitative leap. Intriguingly, the control range of photovoltaic signal between two polarization directions of the short-circuit current density (JSC) and open circuit (VOC) in present films exhibited an increase of 99.2% and 278.9%, respectively. It is suggested that the ferroelectric polarization was the main driving force for enhancing switchable ferroelectric photovoltaic. Therefore, the present work outstands a simple idea to enhance switchable ferroelectric photovoltaic based on the chemical engineering, providing a promising pathway for the development of photovoltaic devices.  相似文献   

2.
《Ceramics International》2017,43(18):16136-16140
A novel two-step nano-patterning method is proposed to fabricate epitaxial ferroelectric BiFeO3 (BFO) nanoring array, which maintains well-epitaxial structure and possesses strong ferroelectricity demonstrated by X-ray diffraction (XRD) and piezoresponse force microscopy (PFM). The ferroelectric polarizations were examined by PFM, revealing the reversible switching behavior under an electric field. This novel method could also be extended to other oxide material systems. The fabrication of high quality ferroelectric nanoring structure provides the possibility to explore novel functionalities (e.g., ferroelectric vortices) and offers application potentials for the high-density non-volatile memory devices.  相似文献   

3.
ZrO2 nanocrystals were synthesised by a microwave-assisted hydrothermal method using zirconium oxychloride (ZrOCl2·8H2O), yttrium chloride (YCl3·6H2O), and liquor ammonia (NH3·H2O) as raw materials, triethanolamine (TEOA) as mineraliser, and polyethylene glycol (PEG) as dispersant. The obtained products were characterised with thermogravimetry-differential scanning calorimetry (TG-DSC), Fourier transform-infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results show that the concentration of ZrOCl2·8H2O had little effect on the material properties, whereas the PEG molecular weight, microwave hydrothermal time and temperature, and the concentration of TEOA greatly influenced the dispersibility of the nano-sized zirconia powders. XRD and FT-IR analyses indicated that the ZrO2 nanocrystals synthesised by the microwave hydrothermal method had a tetragonal phase without any trace of monoclinic or cubic phases. The optimal parameters for preparing nano-zirconia powders with appreciable crystallinity and crystal forms included the use of PEG1000/PEG2000/PEG4000 dispersants, a microwave hydrothermal time of 30–50 min and a temperature of 200–240 °C, and a TEOA concentration of 0.3–0.5 M. Nano-ZrO2 powder prepared via our optimised microwave hydrothermal method contained mostly tetrahedral, spherically shaped, highly homogeneous, and well-dispersed 20–30 nm particles.  相似文献   

4.
《Ceramics International》2022,48(13):18151-18156
The electrical properties and domain reversal in BiFeO3 ferroelectric films were studied using sandwiched heterostructures and piezoresponse force microscopy. A robust polarization state was observed, combined with a switchable domain pattern and a remanent polarization of approximately 100 μC cm?2. In addition, domain reversal was explored using scanning probe microscopy. The results show that dipoles could be reversed along the direction of the electric field under a negative tip bias, leading to carrier gathering near the domain walls. The enhanced conductivity near the domain walls was owing to the discontinuous polarization boundary conditions. In addition, typical diode-like current transport properties are sensitive to various temperature conditions, which is attributed to the Schottky barriers at the contact interface. These findings extend the current understanding of domain texture reversal in ferroelectric films and shed light on their potential applications for future ferroelectric random-access memory operations over a wide temperature range.  相似文献   

5.
Hydrothermal method was used to grow α-Al2O3 whiskers by using hydrated aluminum sulfate, urea and poly ethylene glycol as precursors. X-ray diffraction (XRD), selected area electron diffraction (SAED), and high resolution transmission electron microscope (HRTEM) were used to characterize morphology of the whiskers. By increasing the pH of the solution (by adding extra NaOH), by adjusting calcination times and atmospheres it was possible to tune the whiskers morphology and their aspect ratio. Aspect ratio as high as 25 was obtained after hydrothermal treatment of a solution having pH 3 followed by calcination in Ar or N2 atmosphere at 1200?°C for 6 h.  相似文献   

6.
The microstructure of BiFeO3 (BFO) thin films is investigated using high-resolution transmission electron microscopy. Both (001)- and (101)-type domain boundaries are found in the BFO films. The antipolar clusters induced by antiparallel cation displacements are observed in the pure BFO film, and the cation displacements in the films are proved to originate from the lattice strain which can be adjusted by introduction of a buffer layer. Combining transmission electron microscopy (TEM) with fast Fourier transformation techniques, both γ-Fe2O3 and FeO phases were discovered. The γ-Fe2O3 phase stems from the decomposition of stoichiometric BFO due to the volatilization of Bi, while the FeO phase results from the decomposition of BFO with oxygen vacancies which could come from ion milling process during the TEM sample preparation. Our work sheds light on the origin of the cation displacements and provides a new idea to control the physical properties of BFO films.  相似文献   

7.
《Ceramics International》2017,43(10):7861-7865
Partial substitution of group 10 metal for titanium is predicted theoretically to be one of the most effective ways to decrease the band gap of PbTiO3-based ferroelectric photovoltaic materials. It is therefore of interest to experimentally investigate their ferroelectric and photovoltaic properties. In this work, we focus on the electrical and photocurrent properties of Ni-doped PbTiO3 thin films prepared via a sol-gel route. The nickel incorporation does not modify the crystalline structure of PbTiO3 thin film, but it can increase the dielectric constant, ferroelectric polarization and photocurrent, and simultaneously decrease the band gap. The maximum remnant polarization (Pr) of 58.1 μC/cm2 is observed in PbTi0.8Ni0.2O3 thin film, and its photocurrent density is improved to be approximately one order larger than that of PbTiO3 thin film and simultaneously exhibits the polarization-dependent switching characteristic, which may be a promising choice for ferroelectric photovoltaic applications.  相似文献   

8.
High-quality BiFe1-2xZnxTixO3 (BFZTO with x = 0, 0.01, 0.02, 0.03, 0.04, and 0.05) films were successfully prepared on fluorine-doped tin oxide (FTO)/glass substrates via the sol-gel method. The influence of (Zn, Ti) equivalent co-doping on the structure, surface morphology, and ferroelectric properties of BFZTO films was investigated systematically. X-ray diffraction (XRD) and Raman spectra analysis indicate that co-doping results in structural transformations. Scanning electron microscope (SEM) images show that BFZTO films with x = 0.02 exhibit uniform fine grains and higher density, which is instrumental for the development of ferroelectric properties. X-ray photoelectron spectroscopy (XPS) analysis reveals that BiFe0.96Zn0.02Ti0.02O3 film can inhibit the conversion of Fe3+ into Fe2+, thereby greatly reducing oxygen vacancy concentration. Therefore, under the electric field strength of 150 kV/cm, BiFe0.96Zn0.02Ti0.02O3 film was found to have the lowest leakage current density, J = 1.13 × 10?6 A/cm2, which is five orders of magnitude lower than that of pure BiFeO3 (BFO) film. Furthermore, this film exhibits the largest remnant polarization at room temperature, Pr = 131.9 μC/cm2, which is more than twice as large as that of pure BFO (Pr = 52.6 μC/cm2). Additionally, by comparing P-E hysteresis loops of different regions on the surface of BiFe0.96Zn0.02Ti0.02O3 film, it was found that the film has high uniformity and stable overall performance. Dielectric and magnetic properties were also enhanced via (Zn, Ti) co-doping.  相似文献   

9.
《Ceramics International》2020,46(11):18690-18697
Bi0.9Er0.1Fe1−xMnxO3 (BEFMxO, x = 0.00–0.03) films are synthesized by a sol–gel technique. The BEFO film exhibits a conduction mechanism based on electron tunneling. The high applied electric field causes dissociation of the defect complex, and the resulting oxygen vacancies contribute to fake polarization. Consequently, the BEFO film has poor polarization stability at high applied electric fields. Coexistence of two phases (with space groups R3c:H and R3m:R) and reduced concentrations of oxygen vacancies and Fe2+ in BEFMxO are achieved by co-doping with Er and Mn. The presence of bulk-based conduction in the BEFMxO films then leads to ferroelectric domain switching contributing to the real polarization and to excellent ferroelectric stability. In addition, the BEFM0.02O film shows a typical symmetrical butterfly curve, the highest remnant polarization of ~109 μC/cm2, and the highest switching current of ~1.66 mA. It also has the smallest oxygen vacancy concentration and thus the smallest amount of defect complex, which means that there are fewer pinning effects on ferroelectric domains and therefore excellent ferroelectric stability. This excellent ferroelectric stability makes the BEFMxO films obtain good stability and reliability in the application of ferroelectric memory devices.  相似文献   

10.
以氯化亚锡和硫化铵为前驱物采用微波水热法合成硫化锡纳米晶,采用XRD和TEM对合成物的晶型和形貌进行表征。结果表明:制备的样品为斜方晶体结构的多晶硫化锡粉体,晶粒形状为近球形。随着反应温度的升高,硫化锡纳米晶的晶粒尺寸从20 nm增至50 nm;随着反应时间的延长,硫化锡纳米晶的晶粒尺寸呈增大趋势。利用紫外可见光谱分析,硫化锡纳米晶的光学带隙约为1.61 eV。  相似文献   

11.
Barium strontium titanate (BST) powders of high purity, good crystallinity and well dispersed with a diameter of 50–90?nm are prepared by microwave hydrothermal method using tetrabutyl titanate, barium nitrate and strontium nitrate as the main raw materials. The phase composition, element composition and microstructure of the powders are characterised by X-ray diffraction, Fourier transform infrared spectroscopy, energy dispersive spectroscopy and transmission electron microscopy. The results show that Ba0.6Sr0.4TiO3 powders could be synthesised under the conditions that the reaction temperature is 70°C, the reaction time is 10?min, and the value of pH is 14, which indicates that the reaction temperature, time and the value of pH have a great effect on the crystallinity of nanopowders, and the dispersant (OP-10) plays a role in the dispersion of the nanopowders.  相似文献   

12.
The BiFeO3 (BFO) thin film was deposited by pulsed-laser deposition on SrRuO3 (SRO)-buffered (111) SrTiO3 (STO) substrate. X-ray diffraction pattern reveals a well-grown epitaxial BFO thin film. Atomic force microscopy study indicates that the BFO film is rather dense with a smooth surface. The ellipsometric spectra of the STO substrate, the SRO buffer layer, and the BFO thin film were measured, respectively, in the photon energy range 1.55 to 5.40 eV. Following the dielectric functions of STO and SRO, the ones of BFO described by the Lorentz model are received by fitting the spectra data to a five-medium optical model consisting of a semi-infinite STO substrate/SRO layer/BFO film/surface roughness/air ambient structure. The thickness and the optical constants of the BFO film are obtained. Then a direct bandgap is calculated at 2.68 eV, which is believed to be influenced by near-bandgap transitions. Compared to BFO films on other substrates, the dependence of the bandgap for the BFO thin film on in-plane compressive strain from epitaxial structure is received. Moreover, the bandgap and the transition revealed by the Lorentz model also provide a ground for the assessment of the bandgap for BFO single crystals.  相似文献   

13.
《Ceramics International》2022,48(16):22712-22717
Herein, we studied the ferroelectric switching and current characteristics of BiFeO3 (BFO) nanocubes dispersed on the surface of a Nb-doped SrTiO3 (Nb:STO) substrate based on the ferroelectric polarization orientation. The microwave synthesis method afforded BFO nanocubes with an average size of ~50 nm, which were dispersed on the Nb:STO substrate surface and the substrate was subsequently subjected to heat treatment at 500 °C for 1 h. The piezoelectric d33 hysteresis loop, ferroelectric domain structure, and ferroelectric polarization switching characteristics of the 50-nm-sized BFO nanocubes were examined using piezoresponse force microscopy. Finally, atomic force microscopy confirmed the dependency of current characteristics on the ferroelectric polarization orientation of the BFO nanocubes, verifying the applicability of BFO nanocubes as storage media for ferroelectric polarization information.  相似文献   

14.
以氯化镁、氯化铜、氯化钙为原料,十六烷基三甲基溴化铵(CTAB)为分散剂,采用微波水热法合成了氧化镁-氧化铜-氧化钙复合材料;通过X射线衍射(XRD)、扫描电镜(SEM)、氮吸附(BET)等表征手段对样品进行了结构表征;利用最小抑菌浓度(MIC)和菌落计数法对样品的抗菌性能进行了研究。实验结果表明:氧化镁-氧化铜-氧化钙复合物具有纳米片状结构,制备的MgO0.7CuO0.1CaO0.2比表面积为66.789 m2/g,平均孔径为54.117 nm,孔容为0.904 cm3/(g·nm);MgO0.7CuO0.1CaO0.2在质量浓度为500 μg/mL条件下展现出良好的抗菌性能,在质量浓度为600 μg/mL以上时抑菌率达到99.9%以上。  相似文献   

15.
微波水热法制备超顺磁性Fe3O4纳米粒子   总被引:1,自引:1,他引:0  
采用微波水热法制备超顺磁性Fe3O4纳米粒子,讨论了[Fe3 ]/[Fe2 ]、晶化温度、晶化时间、pH值4因素对平均粒度大小的影响,探索Fe3O4纳米粒子的最佳制备条件,在该基础上采用油酸对其进行表面改性。利用XRD、FT-IR、TEM和VSM对Fe3O4纳米粒子的结构、形貌、磁性能进行表征。结果表明,改性后的纳米Fe3O4粒子为粒度均匀的球形,具有良好的分散性,平均粒径约8 nm;该产物具有超顺磁性,饱和磁化强度为61.8 emu/g。  相似文献   

16.
《Ceramics International》2017,43(16):13063-13068
PbTiO3 (PTO), Pb(Mn0.1Ti0.9)O3 (PMTO), Pb(Sr0.1Ti0.9)O3 (PSTO), and Pb(Zr0.1Ti0.9)O3 (PZTO) were prepared on an indium tin oxide (ITO)/glass substrate by a sol-gel method. PTO, PMTO, PSTO, and PZTO films exhibited energy band gaps of 3.55 eV, 3.63 eV, 3.59 eV, and 3.66 eV, respectively. All these films generated high photocurrents due to high shift currents, because carrier migration channels were successfully introduced by a lattice mismatch between the films and ITO substrates. The PMTO thin film exhibited the best ferroelectric and photovoltaic properties, with a photovoltage of 0.74 V, a photocurrent density of 70 μA/cm2, and a fill factor of 43.34%, which confirms that shift current and ferroelectric polarization are two main factors that affect the ferroelectric photovoltaic properties. The PSTO, PZTO, and PTO thin films displayed space-charge-limited current (SCLC) when the electric field strength was below 10 kV/cm, and these three films broke down when the electric field strength was above 10 kV/cm. Analysis of the shift current mechanism confirmed that the breakdown of the PZTO and PSTO thin films resulted from Pool Frenkel emission current. The PMTO thin film displayed SCLC in the test range, which indicates that doping with Mn could inhibit defect formation in ferroelectric thin films.  相似文献   

17.
《Ceramics International》2017,43(9):6955-6962
High-quality ZnO nanorod arrays were grown on silicon substrates by microwave-assisted hydrothermal method. A ZnO seed layer deposited by magnetron sputtering was used for promoting nanorod growth. Process optimization indicates that the size and surface density of nanorods can be controlled individually by varying process parameters including precursor concentration, heating temperature, and heating time. The photoluminescence performance of the nanorods is closely dependent on the mean size of the rods. Reducing rod diameter leads to decreased UV emission and visible emission intensity ratio, which has been attributed to the increased impurities or defects on the rod surface. The present results provide a feasible approach to modify the optical properties of transparent ZnO nanorod arrays.  相似文献   

18.
Mn3O4/Ni foam composites were synthesized by a one-step hydrothermal method in an aqueous solution containing only Mn(NO3)2 and C6H12N4. It was found that Mn3O4 nanorods with lengths of 2 to 3 μm and diameters of 100 nm distributed on Ni foam homogeneously. Detailed reaction time-dependent morphological and component evolution was studied to understand the growth process of Mn3O4 nanorods. As cathode material for supercapacitors, Mn3O4 nanorods/composite exhibited superior supercapacitor performances with high specific capacitance (263 F · g-1 at 1A · g-1), which was more than 10 times higher than that of the Mn3O4/Ni plate. The enhanced supercapacitor performance was due to the porous architecture of the Ni foam which provides fast ion and electron transfer, large reaction surface area, and good conductivity.  相似文献   

19.
《Ceramics International》2021,47(19):26748-26757
Nanoparticles of ZrO2:Pr stabilized with ytterbium in the range 0.5%mol.-20%mol. were synthesized. Crystallite sizes depended on Yb concentration. Red luminescence resulting from 1D23H4 transition of Pr3+ is present in all the samples. Additionally in the samples calcined at 1200 °C blue-green luminescence from 3P0 level of Pr3+ was found. This emission was more intense than red one. Intensity of the 3P03H4 luminescence depended on ytterbium content and was found to be the highest at 20% mol. Yb. Luminescence study had shown, that ytterbium introduced additional lattice defects. Some quantity of praseodymium activator ions were found to be present at +4 state and changed its valence to +3 as ytterbium content had risen.  相似文献   

20.
王豪  赵婉莹  刘振伟  尧振宇  吴雁 《化工进展》2015,34(6):1646-1651
采用微波水热法(MWH)制备含磷W/Al2O3加氢精制催化剂, 分别以磷酸(PA)、磷酸三乙酯(TEP)和羟基乙叉二磷酸(HEDP)为磷源, 考察磷源、制备方法和磷含量对催化剂物化性质和加氢脱氮(HDN)性能的影响。结果表明, 使用HEDP为磷源不仅可减弱活性组分-载体间的相互作用, 其结构中的羟基还可与MWH产生的H2WO4形成氢键而吸附在H2WO4表面, 抑制H2WO4团聚, 从而实现WO3的高分散。MWH快速均匀加热的特点可以有效抑制H2WO4的过度生长, 并促进其在Al2O3表面的均匀快速分散, 使得以HEDP为磷源制备的W/Al2O3中WO3的分散度和HDN活性远高于浸渍法制备的相同磷源、磷含量和金属含量的催化剂。MWH法制备的磷质量分数为3%的催化剂兼具高的WO3分散度和弱的WO3-Al2O3相互作用, 有最佳的HDN活性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号