首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of postdensification annealing upon microstructures and microwave dielectric characteristics in Ba((Co0.6?x/2Zn0.4?x/2Mgx)1/3Nb2/3)O3 (x = 0, 0.1, 0.2, and 0.3) complex perovskite ceramics have been investigated. Long‐time annealing at temperatures below the order–disorder transition temperature enhances the cation ordering degree and promotes the ordering domain growth. The most significant improvement of Qf value is obtained together with the suppressed temperature coefficient of resonant frequency in the samples annealed at 1400°C for 12 h, while the dielectric constant decreases slightly. The Qf value of ceramics annealed at 1400°C mainly attributes to the enhanced cation ordering degree, because their low‐energy domain boundaries are not detrimental to the Qf value. As the annealing temperature increases close to the transition temperature, coarse ordering domains with high‐energy boundaries are formed, and then the Qf value steadily decreases because of the inferior domain structure, even the cation ordering degree increases. The microwave dielectric characteristics of Ba((Co0.6?x/2Zn0.4?x/2Mgx)1/3Nb2/3)O3 ceramics are affected by the common function of ordering degree and domain structure. The best combination of microwave dielectric characteristics is obtained in the composition of x = 0.3 after annealing at 1400°C for 12 h: εr = 33.2, Qf = 117 200 GHz, and τf = 8.6 ppm/°C.  相似文献   

2.
A/B site co-substituted (Ca1?0.3xLa0.2x)[(Mg1/3Ta2/3)1?xTix]O3 ceramics (0.1  x  0.5) were prepared by solid state reaction and the structures, microstructures and dielectric properties were investigated. B site 1:2 cation ordering and oxygen octahedra tilting lead to monoclinic symmetry with space group P21/c for x = 0.1. For x above 0.1, the ordering was destroyed and the crystal structure became orthorhombic with space group Pbnm. The B site 1:2 cation ordering tended to be destroyed to form 1:1 ordering by the A site La3+ substitution. The dielectric constant increased linearly with increasing content of Ti4+ as the increasing second Jahn–Teller distortion enhanced the B site cation rattling. The temperature coefficient of resonant frequency and Qf values showed abnormal variations, which were refined to be caused by the increasing A site cation vacancy and diffused distribution of small size ordering domains respectively. Good combination of microwave dielectric properties was obtained at x = 0.5, where ?r = 48, Qf = 21,000 GHz and τf = 2.2 ppm/°C.  相似文献   

3.
Effects of Mg substitution on order/disorder transition, microstructure, and microwave dielectric characteristics of Ba((Co0.6Zn0.4)1/3Nb2/3)O3 complex perovskite ceramics have been investigated. The ordered complex perovskite solid solutions are obtained in Ba((Co0.6?x/2Zn0.4?x/2Mgx)1/3Nb2/3)O3 ceramics (x = 0, 0.1, 0.2, and 0.3), and the ordering degree in the as‐sintered dense ceramics increases with increasing Mg‐substitution amount. The significantly improved Qf value is obtained in the present ceramics with increasing x, whereas the dielectric constant decreases slightly together with some increase of temperature coefficient of resonant frequency. The best combination of microwave dielectric characteristics is obtained in the composition of x = 0.3: εr = 33.7, Qf = 93 800 GHz, and τf = 9.6 ppm/°C. In the Mg‐substituted compositions, clear domain boundaries are obtained and the domain size increases as x increases, the highest Qf value is obtained when the domain size is about 40–60 nm in the ceramics with x = 0.3. The increased ordering degree and the fine ordering domain structure are considered to primarily contribute to the significant increase of Qf value in the Mg‐substituted Ba((Co0.6Zn0.4)1/3Nb2/3)O3 complex perovskite ceramics.  相似文献   

4.
Dense (1 ? x) La[Al0.9(Mg0.5Ti0.5)0.1]O3x CaTiO3 ceramics were synthesized via solid-state reaction. The crystal structure and microwave dielectric properties of the ceramics were systematically investigated. Rietveld refinement revealed that when x ≤ 0.2, the ceramics had a rhombohedral structure with an R-3c space group. When x ≥ 0.5, the ceramics had an orthorhombic structure with a Pbnm space group. Selected area electron diffraction and Raman spectroscopy analyses proved that the microwave dielectric ceramics had a B-site order, which accounted for the great improvement in microwave dielectric properties. The content of oxygen vacancies was identified through X-ray photoelectron spectroscopy, and the change rule of Q × f was closely related to oxygen vacancy content. The perturbation of A-site cations had an important influence on dielectric constant. Specifically, with the increase in Ti4+ content, the perturbation effect of the A-site cations was enhanced and dielectric constant increased. When x = 0.65, the temperature coefficient of resonant frequency of the (1 ? x) La[Al0.9(Mg0.5Ti0.5)0.1]O3x CaTiO3 microwave dielectric ceramics was near zero. The optimal microwave dielectric properties of 0.35LaAl0.9(Mg0.5Ti0.5)0.1O3–0.65CaTiO3 were εr = 44.6, Q × f = 32,057 GHz, and τf = +2 ppm/°C.  相似文献   

5.
In this study, Zn2+-substituted Li2MgSiO4 ceramics (Li2(Mg1-xZnx)SiO4, x = 0.00, 0.05, 0.10, 0.15, and 0.20) were synthesized using a traditional solid-state method. A fixed amount of LiF sintering aid (1.5 wt%) was added to the ceramics for decreasing the sintering temperature and adjusting their microwave dielectric properties. X-ray diffraction (XRD) results revealed no secondary phases, and scanning electron microscopy (SEM) data suggest that the Zn2+ ion substitution increased the size and uniformity of the grains, thereby affecting the densification of the prepared ceramics. The maximum bulk density (2.94 g/cm3) was found in a Zn2+ ion-substituted ceramic with x = 0.10 at a relative density of 94.2% (compared with the XRD theoretical density). Excellent microwave dielectric properties (εr = 6.28, Q × f = 50400 GHz, and τf = ?145 ppm/°C) can also be obtained at this zirconium content. We believe that the developed ceramics are promising for use as antenna substrates or transmit/receive modules in low-temperature co-firing ceramic applications.  相似文献   

6.
CaTi1-x (Mg1/2W1/2)xO3 (x = 0, 0.02, 0.04, 0.06, 0.08) dielectric ceramics were synthesized via the traditional solid-state reaction method. Crystal structure and microwave dielectric properties of CaTi1-x (Mg1/2W1/2)xO3 system were systematically investigated based on chemistry bond theory (P–V-L theory) for the first time. The pure perovskite phase was obtained for all doped samples, as confirmed through the XRD and Rietveld refinement results. The lattice characteristics were closely related to the microwave dielectric properties. The bond ionicity, lattice energy, and bond energy affected the dielectric constant, quality factor, and temperature stability of the ceramic material. Through the use of (Mg1/2W1/2)4+ doped on B-site, the CaTi1-x (Mg1/2W1/2)xO3 system can maintain a high dielectric constant (εr > 100) while effectively reducing the τf value from 800 ppm/°C to less than 300 ppm/°C and improving the Q × f value to 9650 GHz (at 3.76 GHz).  相似文献   

7.
The structure evolution, sintering behavior and microwave dielectric properties of La(2−x)/3Nax(Mg1/2W1/2)O3 (x = 0–0.5) were investigated in this paper. The X-ray diffraction (XRD) results show that all samples exhibit single phase, and the structure changed from orthorhombic when 0  x < 0.3 to monoclinic phase when 0.3  x  0.5. The size and ordering degree of A/B-site domains decrease with the increase in x value. The sintering temperature of the Na-doped samples increased compared to the pure La2/3(Mg1/2W1/2)O3 (LMW) due to the estimated decrease in the concentration of A-site vacancies. The addition of Na+ ion does not affect the dielectric permittivity greatly. The Q × f value decreases with the increase in x value, although the estimated concentration of A-site vacancies decreases with increasing x, which may be ascribed to the decrease of A/B-site ordering and domain size with the increase in x. The temperature coefficient of resonant frequency changed from negative values into positive values with the increase in x value.  相似文献   

8.
The effect of B-site cation deficiency on the structure and microwave dielectric properties of Ba(Co1/3Nb2/3)O3 (BCN) was investigated. Stoichiometric and co-deficient compositions based on Ba(Co1/3−xNb2/3)O3 [x = 0.0, 0.01, 0.02, 0.03 and 0.04] were prepared using the conventional mixed oxide route. Small amounts of V2O5 (0.1 wt%) were added to promote densification. The dielectric loss is very sensitive to the composition; it was found that co-deficiency degraded the microwave dielectric properties. The stoichiometric formulation (x = 0) exhibited the best microwave properties. The improvements in the microwave dielectric properties were achieved by increasing the degree of 1:2 cation ordering. The highly ordered, stoichiometric BCN ceramics showed a relative permittivity (ɛr) of 32, quality factor (Q × f) of 66,500 GHz and a negative temperature coefficient of resonant frequency (τf) of −10 ppm/°C at 4 GHz.  相似文献   

9.
《Ceramics International》2020,46(9):13095-13101
In this work, Li2Mg0.6−xCoxZn0.4SiO4 ceramics (x = 0–0.4) added with 3 wt% Li2O–B2O3–Bi2O3–SiO2 (LBBS) glass were synthesised using the solid-state reaction method. The effects of substituting Co2+ for Mg2+in Li2Mg0.6−xCoxZn0.4SiO4 ceramics on crystal structure, microstructure, densification, crystallisation and microwave dielectric properties were investigated. X-ray diffraction patterns showed that monoclinic Li2MgSiO4, monoclinic Li2ZnSiO4 and orthorhombic Li2CoSiO4 formed finite solid solution in Li2Mg0.6−xCoxZn0.4SiO4 ceramics. Clear grain boundaries were observed via scanning electron microscopy. The substitution of Co2+ for Mg2+ increased grain size, densification, crystallinity degree and dielectric constant; it also reduced the dielectric loss of the ceramics to a certain extent. The absolute values of τf were positively related to the crystallinity degree. Li2Mg0.55Co0.05Zn0.4SiO4 ceramic added with 3 wt% LBBS and sintered at 900 °C exhibited considerable microwave dielectric properties of εr = 5.8, Q × f = 47,518 GHz and τf = −74.8 ppm/°C. Therefore, the ceramic is considered a candidate low-temperature co-fired ceramic material for substrate and filter applications.  相似文献   

10.
A new solid solution of (1?x)Pb(Mg1/2W1/2)O3xPb(Zn1/2W1/2)O3 has been prepared in the form of ceramics by solid‐state reaction with composition x up to 30%. It is found that with the substitution of Zn2+ for Mg2+ on the B site of the of complex perovskite structure the antiferroelectric (AFE) Curie temperature TC of PMW increases from 40°C (x = 0) to 67°C (x = 30%), indicating an enhancement of antiferroelectric order, whereas, at the same time, the phase transition becomes more diffuse due to a higher degree of chemical inhomogeneity. X‐ray diffraction analysis indicates that the crystal structure adopts an orthorhombic space group (Pmcn) with a decrease in lattice parameter a, but an increase in b and c as the Zn2+ concentration increases. The low dielectric constant (~ 102), low dielectric loss (tanδ ≈ 10?3), linear‐field‐induced polarization, and significantly high breakdown field (~ 125 kV/cm) at room temperature make this family of dielectric materials a promising candidate for ceramic insulators.  相似文献   

11.
The spinel-structured Zn1-3xAl2+2xO4 (x = 0–0.2) ceramics having defective structures were synthesized using the molten salt method, and their microwave dielectric properties and cation distributions were assessed. The 27Al solid-state nuclear magnetic resonance spectra of these ceramics demonstrate that they have an intermediate spinel structure in which the tetrahedral site occupancy increases from 0.03 to 0.64 as x increases. Moreover, crystal structure refinements suggest that cation vacancies are located at octahedral sites for x = 0.1 and 0.2. Based on these data, the introduction of cation vacancies at octahedral sites appears to enhance the preferential occupation of tetrahedral sites by Al3+. The εr of these ceramics slightly decreased from 8.5 to 8.2 with increasing x, while the Q·f value increased significantly, from 127,532 to 202,468 GHz, upon the introduction of cation vacancies. An intermediate spinel structure with preferential occupancy of tetrahedral sites by trivalent cations exhibits an enhanced Q·f value.  相似文献   

12.
(Mg1?xZnx)Al2O4 transparent ceramics were fabricated by spark plasma sintering technique at 1325°C for 10 min. A small mount of Zn2+ addition to MgAl2O4 ceramics was very effective to the performance improvement, while further increase in Zn‐doped content would give rise to the optical transmittance deterioration. The optical and microwave dielectric properties of MgAl2O4 transparent ceramics were improved by Zn substitution for Mg. The in‐line transmittance of the (Mg1?xZnx)Al2O4 (= 0.02) ceramics can be as high as 70% at λ = 550 nm and 86.5% at λ = 2000 nm, respectively. The dielectric constant εr of (Mg1?xZnx)Al2O4 just varied from 8.32 to 8.54, however, the Q × f value increased significantly up to a maximal value of 66,000 GHz at = 0.02. Moreover, the τf of (Mg1?xZnx)Al2O4 transparent ceramics changed from ?74 to ?65.5 ppm/°C. With the increasing of Zn‐doped content, the average grain size and the porosity increased, which was the primary reason for the change in optical and microwave dielectric properties.  相似文献   

13.
Bo Li  Jiawei Tian  Lei Qiu 《Ceramics International》2018,44(15):18250-18255
Ca5Zn4-xMgxV6O24 (x?=?0–3) microwave dielectric ceramics with low sintering temperature were synthesized via the conventional solid-state reaction. Effects of the substitution of Mg2+ for Zn2+ on crystal structures and microwave dielectric properties were investigated. XRD and Rietveld refinement showed the solid solution single phase formed when 0?≤?x?≤?2, but a few ZnO was observed when x?=?3. Meanwhile, the lattice parameters were found to decrease monotonously with Mg content increasing. The vibration modes of Raman were confirmed and the relationship with microwave dielectric properties was analyzed. Appropriate substitution of Mg2+ improved the packing fraction, the cation ordering degree, and the Y-site bond valence, contributing to high Q×f and low | τf |. However, the εr reduced with the increasing content of Mg2+ due to the decrease of ion polarizability. Finally, the best microwave dielectric properties were achieved at x?=?2 with εr =?11.0, Q?×?f?=?66,365?GHz (at 10.0?GHz), and τf =??80.4?ppm/°C.  相似文献   

14.
The structure stabilities of double perovskite ceramics‐ (1 ? x) Ba(Mg1/2W1/2)O3 + xBa(Y2/3W1/3)O3 (0.01 ≤ x ≤ 0.4) have been studied by X‐ray powder diffraction (XRD), scanning electron microscopy (SEM), and Raman spectrometry in this study. The microwave dielectric properties of the ceramics were studied with a network analyzer at the frequency of about 8–11 GHz. The results showed that all the compounds exhibited face‐centered cubic perovskite structure. Part of Y3+ and W6+ cations occupied 4a‐site and the remaining Y3+ and Mg2+ distributed over 4b‐site, respectively, and kept the B‐site ratio 1:1 ordered. Local ordering of Y3+/Mg2+ on 4b‐site and Y3+/W6+ cations on 4a‐site within the short‐range scale could be observed with increasing Y‐doping content. The decomposition of the double perovskite compound at high temperature was successfully suppressed by doping with Y on B‐site. However, Ba2Y0.667WO6 impurity phase appeared when x > 0.1. The optimized dielectric permittivity increased with the increase in Y doping. The optimized Q × f value was remarkably improved with small amount of Y doping (x ≤ 0.02) and reached a maximum value of about 160 000 GHz at x = 0.02 composition. Further increasing in Y doping led to the decrease in Q × f value. All compositions exhibited negative τf values. The absolute value of τf decreased with increasing Y‐doping content. Excellent combined microwave dielectric properties with εr = 20, Q × = 160 000 GHz, and τf = ?21 ppm/°C could be obtained for x = 0.02 composition.  相似文献   

15.
Broadband dielectric spectroscopy results of various ordered and disordered (1 ? x)Pb(Mg1/3Nb2/3)O3–(x)Pb(Sc1/2Nb1/2)O3 (PMN–PSN) ceramics are investigated in the temperature range from 80 K to 300 K and frequency range from 20 Hz to 2 THz. Dielectric dispersion is very broad and in the ferroelectrics case (x = 1, 0.95) consists of two parts: low-frequency part caused by ferroelectric domains and higher frequency part caused by soft mode. The relaxational soft mode exhibits pronounced softening close to phase transition temperature, as it is typical for order–disorder phase transitions. By substituting Sc3+ by Mg2+ in PMN–PSN ceramics relaxation slows down, and for relaxors (x = 0.2) the most probable relaxation frequency decreases on cooling according to Vogel–Fulcher law.  相似文献   

16.
Cordierite-based dielectric ceramics with a lower dielectric constant would have significant application potential as dielectric resonator and filter materials for future ultra-low-latency 5G/6G millimeter-wave and terahertz communication. In this article, the phase structure, microstructure and microwave dielectric properties of Mg2Al4–2x(Mn0.5Zn0.5)2xSi5O18 (0 ≤ x ≤ 0.3) ceramics are studied by crystal structure refinement, scanning electron microscope (SEM), the theory of complex chemical bonds and infrared reflectance spectrum. Meanwhile, complex double-ions coordinated substitution and two-phase complex methods were used to improve its Q×f value and adjust its temperature coefficient. The Q×f values of Mg2Al4–2x(Mn0.5Zn0.5)2xSi5O18 single-phase ceramics are increased from 45,000 GHz@14.7 GHz (x = 0) to 150,500 GHz@14.5 GHz (x = 0.15) by replacing Al3+ with Zn2+-Mn4+. The positive frequency temperature coefficient additive TiO2 is used to prepare the temperature stable Mg2Al3.7(Mn0.5Zn0.5)0.3Si5O18-ywt%TiO2 composite ceramic. The composite ceramic of Mg2Al3.7(Mn0.5Zn0.5)0.3Si5O18-ywt%TiO2 (8.7 wt% ≤ y ≤ 10.6 wt%) presents the near-zero frequency temperature coefficient at 1225 °C sintering temperature: εr = 5.68, Q×f = 58,040 GHz, τf = ?3.1 ppm/°C (y = 8.7 wt%) and εr = 5.82, Q×f = 47,020 GHz, τf = +2.4 ppm/°C (y = 10.6 wt%). These findings demonstrate promising application prospects for 5 G and future microwave and millimeter-wave wireless communication technologies.  相似文献   

17.
Microwave dielectric ceramics of (1?x)Ba(Mg1/3Nb2/3)O3xBaSnO3 [(1?x)BMN‐xBS] with high quality factors was synthesized by the solid‐state reaction method. The effects of BaSnO3 additions (x = 0–0.2) on the sinterability, crystal structures, microwave dielectric properties, and microwave dielectric loss mechanisms of BMN were investigated systematically. The degree of 1:2 cation ordering was decreased with increasing Sn content and eventually faded away as x ≥ 0.1, where the low‐temperature relaxations disappeared coincidently through the thermally stimulated depolarization current technique. It was supposed to be the short‐range misplacements of the B‐site cations within the long‐range ordered structure. Meanwhile, the high‐temperature relaxations associated with the in‐grain oxygen vacancies were found in all the title compounds. Though the concentrations of oxygen vacancies of 0.8BMN‐0.2BS were higher than BMN, high Q × f values could also be obtained even in the absence of 1:2 cation ordering. Specifically, the excellent characteristics like εr = 29.02, Q × f = 90 000 GHz and τf = 6.3 ppm/°C were achieved in the specimens of x = 0.2 sintered at 1450°C.  相似文献   

18.
《Ceramics International》2020,46(14):22024-22029
Mg1-xCoxMoO4 (x = 0.01–0.15) ceramics were prepared by traditional solid-state methods. The phase composition, crystalline structure, micromorphology, and microwave dielectric properties of Mg1-xCoxMoO4 ceramics were comprehensively studied. Mg1-xCoxMoO4 ceramics present monoclinic wolframite structures from x = 0.01 to x = 0.15 with Co occupying the Mg-site. With the addition of Co2+, εr of Mg1-xCoxMoO4 ceramics increase. Q × f is maximal at 5 mol% Co2+ content. The Mg0.95Co0.05MoO4 ceramic exhibits an optimal microwave dielectric property: εr = 7, Q × f = 59247 GHz, τf = −68 ppm/°C. The Q × f values increase by 20% compared with the pure MgMoO4 ceramics (~49149 GHz). Doping Co2+ effectively promotes the densification of ceramics and increases εr and Q × f. However, when the Co content exceeds 5 mol%, the decreased packing fraction and disorder distribution of ions contribute to the increase in dielectric losses. The correlations between Co2+ substitution and wolframite structure have been discussed by Raman spectroscopy, FT-IR spectroscopy and Rietveld refinement.  相似文献   

19.
《Ceramics International》2015,41(4):5872-5880
Effects of Zr-substitution on the structure, microstructure and microwave dielectric properties of Ba(Ni1/3Nb2/3)O3 ceramics have been investigated. A small amount of Zr-substitution facilitates the densification of Ba(Ni1/3Nb2/3)O3 ceramics. Within x≤0.05, the densification temperature decreases with increasing x in Ba[(Ni1/3Nb2/3)1−xZrx]O3, while it turns to increase for x>0.05. With increasing x, the grains become more homogeneous and closely contacted, and significantly increase in size for x=0.15–0.20. The B-site cations 1:2 ordering is destroyed by Zr-substitution, and only stabilizes for x≤0.04. B-site cations 1:1 ordering starts to form in x=0.04, and the 1:1 ordering degree first increases and then decreases with increasing x. Qf value decreases slightly in x=0.01 and then increases monotonously with x increasing from 0.02 to 0.20. The destroyed 1:2 ordering structure is responsible for the decreased Qf value in x=0.01, while the improved grain configuration dominates the increase of Qf value for x=0.02–0.20. The dielectric constant εr increases monotonously with increasing x, due to the higher polarizability of Zr ion than the average value of Ni/Nb ions. The temperature coefficient of resonant frequency τf shifts from negative to positive through zero with increasing x, which is ascribed to the highly positive τf value of the end member BaZrO3. The significant improvement of microwave dielectric properties has been achieved for x=0.10, higher εr, higher Qf as well as near zero τf value have been obtained: εr=31.8, Qf=36,100 GHz, τf=7.8 ppm/°C.  相似文献   

20.
《Ceramics International》2021,47(22):31732-31739
The microwave dielectric properties of spinel-structured Li(Mg0.5Ti0.5)xGa5−xO8 (0 ≤ x ≤ 1) ceramics were researched together with their microstructures. The X-ray diffraction and Raman spectroscopic revealed that an ordered spinel structure in 1: 3 B-site ordering with space group P4332 was formed in the composition range of 0 = x ≤ 0.25, and a disordered spinel with space group Fd-3m was formed in 0.5 = x ≤ 1. All the ceramics were compact with uniform grain, clear grain boundaries and high relative density (ρrelative ≥ 95 %). With the substitution of [Mg0.5Ti0.5]3+ for Ga3+ increased, the dielectric constant (εr) increased from 10.48 to 11.28, which was related to the increased molar ionic polarizability (αtheo/Vm) and B-site bond ionicity. The temperature coefficient of the resonant frequency (τf) slightly increased from −66.27 ppm/°C to −61.45 ppm/°C, due to the decrease of B-site bond valence. The Q × f value firstly decreased from 125,400 GHz to 50,381 GHz and then increased to 85,360 GHz, which was affected by the intrinsic loss analyzed by lattice energy. The optimal microwave dielectric properties were obtained for LiMg0.5Ti0.5Ga4O8 ceramic (x = 1) sintered at 1260 °C with εr = 11.28, Q × f = 85,360 GHz and τf = −61.45 ppm/°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号