首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2023,49(7):11027-11037
Zn2SnO4(ZTO)/ZIF-8 nanocomposite photocatalysts were prepared by solution method and hydrothermal method. The structures and properties of ZTO/ZIF-8 nanocomposites were studied. Results indicate that ZTO is adsorbed on the surface of ZIF-8 after recombination. The addition of ZIF-8 can inhibit the recombination of photoelectron-hole pairs, which significantly improve the photocatalytic activity of ZTO. After the addition of ZIF-8, the adsorption performance of the composite is slightly improved, which is attributed to the high specific surface area of ZIF-8. In the removal efficiency of 20 mg/L MB dye solution, the photocatalytic activity of ZTO/0.4 wt%ZIF-8 nanocomposite is 75% after 120 min. In addition, the structural stability and cyclic properties of ZTO/ZIF-8 are investigated, and the degradation efficiency is still 71% after four cycles.  相似文献   

2.
In this study, we prepared different shapes of gold nanoparticles by seed-mediated growth method and applied them on the photoelectrodes of dye-sensitized solar cells (DSSCs) to study the surface plasma resonant (SPR) effect of gold nanoparticles on the photoelectrodes of dye-sensitized solar cells. The analyses of field emission scanning electron microscopy show that the average diameter of the spherical gold nanoparticles is 45 nm, the average length and width of the short gold nanorods were 55 and 22 nm, respectively, and the average length and width of the long gold nanorods were 55 and 14 nm, respectively. The aspect ratio of the short and long gold nanorods was about 2.5 and 4, respectively. The results of ultraviolet–visible absorption spectra show that the absorption wavelength is about 540 nm for spherical gold nanoparticles, and the absorption of the gold nanorods reveals two peaks. One is about 510 to 520 nm, and the other is about 670 and 710 nm for the short and long gold nanorods, respectively. The best conversion efficiency of the dye-sensitized solar cells with spherical gold nanoparticles and short and long gold nanorods added in is 6.77%, 7.08%, and 7.29%, respectively, and is higher than that of the cells without gold nanoparticles, which is 6.21%. This result indicates that the effect of gold nanoparticles on the photoelectrodes can increase the conductivity and reduce the recombination of charges in the photoelectrodes, resulting in the increase of conversion efficiency for DSSCs. In addition, the long gold nanorods have stronger SPR effect than the spherical gold nanoparticles and short gold nanorods at long wavelength. This may be the reason for the higher conversion efficiency of DSSCs with long gold nanorods than those of the cells with spherical gold nanoparticles and short gold nanorods.  相似文献   

3.
Carbon-encapsulated TiO2 was synthesized and its applications to dye-sensitized solar cells (DSSCs) were evaluated. When carbon-encapsulated TiO2 was applied to DSSCs as a scattering material, the efficiency was enhanced considerably compared to that using only double-layered, nanometer-sized pure TiO2. The photovoltaic efficiency of the carbon-encapsulated TiO2-DSSCs was approximately 3.59%, while it was 2.87% for the pure TiO2-DSSCs. The quantum efficiencies evaluated from IPCE spectroscopy were better on the carbon-encapsulated TiO2-DSSCs compared to of a TiO2-DSSCs. PL spectroscopy showed that the rate of recombination between the holes and electrons on the carbon-encapsulated TiO2 were lower than that on pure TiO2.  相似文献   

4.
Photoelectrodes of mixed microsized TiO2 aggregates and individually dispersed TiO2 nanocrystallites with different ratios were fabricated and studied for improved power conversion efficiency in dye-sensitized solar cells (DSCs). TiO2 aggregates/nanocrystallites composites possess several advantages for high performance of DSCs, including the light scattering by the microsized TiO2 aggregates and the high surface area of nanocrystallites both in aggregates and individually dispersed. A high power conversion efficiency of 7.59% was achieved with mixed TiO2 aggregates/nanocrystallites photoelectrode using conventional dye N3, without applying anti-reflection coating, back-scattering layer, or chemical treatment. The electron transport properties of DSCs with mixed photoelectrodes were investigated by electrochemical impedance spectra, and the results showed that such a photoelectrode with mixed aggregates and nanocrystallites possess better connectivity for efficient electron transport.  相似文献   

5.
In the present work, Zn2SnO4 nanoparticles were doped with silicon to improve their electrical and optical properties by the conventional solid‐state reaction method. The results showed that the minimum electrical resistivity of about 0.09 Ωcm was obtained for Zn2SnO4 nanoparticles with 3% Si doping. The decrease in the electrical resistivity can be attributed to the insertion of Si+4 atoms into the Zn+2 and/or Sn+4 sites and also the formation of more oxygen vacancies in the Zn2SnO4 lattice. The formation of the more oxygen vacancy defect states in Si‐doped Zn2SnO4 nanoparticles was verified by photoluminescence spectroscopy. The efficiency of a dye‐sensitized solar cell based on 3% Si‐doped Zn2SnO4 was significantly better, by about 81%, compared to that of a cell based on the undoped Zn2SnO4. The enhancement in the efficiency can be ascribed to the facilitation of electron transport throughout a photoelectrode due to increase in the charge carrier concentration which was caused by Si doping.  相似文献   

6.
We suggest a simple process to fabricate a hole-patterned TiO2 electrode for a solid-state dye-sensitized solar cell (DSSC) to enhance cell performance through interfacial properties of the electrode with the electrolyte with minimum dye loading. The method involves prepatterning of SU-8 photoresist on a conducting glass, followed by the deposition of a nanocrystalline TiO2 layer, calcination at 450 °C and characterization using scanning electron microscopy (SEM). Hole-patterned TiO2 photoelectrodes yielded better solar energy conversion efficiency per dye loading compared to a conventional non-patterned photoelectrode. For example, a 50 μm hole-patterned DSSC exhibited 4.50% conversion efficiency in the solid state, which is comparable to an unpatterned flat TiO2 photoelectrode (4.57%) however the efficiency per dye loading of the former (0.986%/g) was much greater than that of the latter (0.898%/g). The improvement was attributed to improved transmittance through the electrode as well as better interfacial properties between the electrolyte and electrode, as confirmed by UV-visible spectroscopy and electrochemical impedance (EIS) analysis.  相似文献   

7.
阐述了聚噻吩类化合物作为染料敏化剂和电解质在染料敏化太阳能电池中的应用研究进展。  相似文献   

8.
In order to enhance the electron transport on the photoelectrodes of dye-sensitized solar cells, one-dimensional rutile nanorods were prepared using electrospun TiO2 nanofibers. The grain size of the nanorods increased with increasing temperature. Electrochemical impedance spectroscopy measurements revealed reduced interface resistance of the cells with the one-dimensional rutile nanorods due to the improved electron transport and the enhanced electrolyte penetration. Intensity-modulated photocurrent/photovoltage spectroscopy showed that the one-dimensional rutile nanorods provided the electrons with a moving pathway and suppressed the recombination of photogenerated electrons. However, an excessive quantity of rutile nanorods created an obstacle to the electrons moving in the TiO2 thin film. The photoelectrode with 7 wt.% rutile nanorods optimized the performance of the dye-sensitized solar cells.  相似文献   

9.
In this present work, isomers like 2- and 4-Mercapto pyridine were used as dopants (additives) in Poly (ethylene oxide) based polymer electrolyte and their effects in dye-sensitized solar cells (DSC) have been investigated. Due to the coordinating and plasticizing effects of Mercapto pyridine, enhanced ionic conductivity and reduced crystallinity of PEO polymer electrolyte accompanied by a better penetration of the same into the dye coated nanocrystalline TiO2 in order to have better performances were achieved. The 2-Mercapto pyridine doped PEO (E) shows comparatively better performance than 4-Mercapto pyridine doped one (F), is due to the fact that the π-electron donicity of 2-Mercapto pyridine is greater. These results suggests that the electron donating capacity of 2-Mercapto pyridine and 4-Mercapto pyridine would influence the interaction of nanocrystalline TiO2 electrode and I/I3 redox couple leading to radical changes in the cell performance.  相似文献   

10.
In this study, dye-sensitized solar cells (DSSCs) were fabricated using nanocrystalline titanium dioxide (TiO2) nanoparticles as photoanode. Photoanode thin films were prepared by doctor blading method with 420 kg/cm2 of mechanical compression process and heat treatment in the air at 500°C for 30 min. The optimal thickness of the TiO2 NP photoanode is 26.6 μm with an efficiency of 9.01% under AM 1.5G illumination at 100 mW/cm2. The efficiency is around two times higher than that of conventional DSSCs with an uncompressed photoanode. The open-circuit voltage of DSSCs decreases as the thickness increases. One DSSC (sample D) has the highest conversion efficiency while it has the maximum short-circuit current density. The results indicate that the short-circuit current density is a compromise between two conflict factors: enlargement of the surface area by increasing photoanode thickness and extension of the electron diffusion length to the electrode as the thickness increases.  相似文献   

11.
Herein, enhancement of dye‐sensitized solar cell (DSC) performance is reported by combining the merits of the dye loading of TiO2 nanoparticles and light scattering, straight carrier transport path, and efficient electron collection efficiency of TiO2 cubes. We fabricate DSC devices with various arrangement styles and compositions of the electrodes in the forms of monolayer and double layer films. For this purpose, the solvothermal synthesized TiO2 cubic particles (100‐600 nm) are employed as the scattering layer, whereas TiO2 nanoparticles (15‐30 nm) synthesized via a combination of solvothermal and sol‐gel routes are used as the active layer of devices. We improve the photovoltaic characteristics of DSCs by two mechanisms. First, the light harvesting of DSC devices made of nanoparticles is improved by controlling the thickness of monolayer films, reaching the highest efficiency of 7.0%. Second, the light scattering and electron collection efficiency are enhanced by controlling the composition of double layer films composed of mixtures of TiO2 nanoparticles and cubes, obtaining the maximum efficiency of 8.21%. The enhancements are attributed to balance between charge transfer resistance and charge recombination of photo‐generated electrons as well as dye loading and light scattering.  相似文献   

12.
A poly(ether urethane) (PEUR)/poly(ethylene oxide) (PEO)/SiO2 based nanocomposite polymer is prepared and employed in the construction of high efficiency all-solid-state dye-sensitized nanocrystalline solar cells. The introduction of low-molecular weight PEUR prepolymer into PEO electrolyte has greatly enhance the electrolyte performance by both improving the interfacial contact properties of electrode/electrolyte and decreasing the PEO crystallization, which were confirmed by XRD and SEM characteristics. The effects of polymer composition, nano SiO2 content on the ionic conductivity and I3 ions diffusion of polymer-blend electrolyte are investigated. The optimized composition yields an energy conversion efficiency of 3.71% under irradiation by white light (100 mW cm−2).  相似文献   

13.
In this study, hybrid silica-conjugated TiO2 photoelectrodes were developed in order to enhance the efficiency of a dye-sensitized solar cell. The relative changes in surface crystallite size and chemical surface states of TiO2 composites were investigated by XRD, XPS, and UV-vis spectroscopy. Therein, the chemical compositions of the nanostructured photoelectrode surfaces were observed to significantly change when the glass powder Si atoms became chemically bonded with the Ti atoms on the photoelectrode surface without appreciable changes to the crystalline structure of TiO2. Furthermore, a significant conversion of Si-Ox into Si-O at the surface of the photoelectrode was observed following the addition of glass powder, which confirms the covalent bonding of Si and Ti atoms into Ti-O-Si. A maximum cell efficiency (η from 5.8% to 8.5%) was observed when 2 wt% of the low-temperature glass powder was added to the TiO2 with a constant amount of dye loading. This observed peak in solar cell efficiently is most likely due to an increase in light harvesting, which is a result of an enhancement of light scattering and the coordination between Ti and Si to establish a Ti-O-Si bond.  相似文献   

14.
Cr-doped blue TiO2 (Cr-BTiO2) nanoparticles were fabricated at room temperature using lithium-ethylenediamine (Li-EDA) as reducing agent. The addition of Li-EDA promotes the selective reduction of the rutile phase of TiO2 into the amorphous phase keeping anatase phase unaltered. Hence, the phase-selective reduction of TiO2 leads to the formation of blue TiO2 nanoparticles. Synthesized samples were characterized by equipment fitted with modern technology. The shifting of (101) peak to a lower angle (2θ) in Cr-BTiO2 in X-ray diffraction (XRD) pattern suggests the successful doping of chromium into TiO2 lattices. In Raman spectra, the shifting of the active Eg peak of Cr-BTiO2 nanoparticles to higher wavenumber also suggests the successful substitution of Ti by Cr. The blue TiO2 and Cr-BTiO2 show increased absorption of light in the visible region compared to TiO2 (P25). The modified TiO2 samples have improved electron-hole separation tendency as predicted by the photoluminescence spectra (PL). Also, doping of Cr- into TiO2 lattice results the formation of oxygen vacancy as detected by X-ray photoelectron spectroscopy (XPS). Among all samples, Cr-BTiO2 demonstrated improvement in Jsc and overall incident photon to current conversion efficiency. Therefore, the synthetic effect is thus responsible for the enhancement in efficiency of Cr-BTiO2 towards the dye-sensitized solar cell (DSSC) by 2.5 and 1.5 times higher than the P25 and blue TiO2, respectively.  相似文献   

15.
The separation of CO2/CH4 is reported in detail by using zeolitic imidazolate framework (ZIF-8) membrane which was prepared on 3-aminopropyltriethoxysilane modified Al2O3 tube through microwave heating synthesis. Attributed to the preferential adsorption affinity of CO2 over CH4 and a narrow pore window of 0.34 nm, the ZIF-8 membrane shows high separation performances for the separation of CO2/CH4 mixtures. For the separation of equimolar CO2/CH4 mixture at 100°C and 2 bar feed (1 bar permeate) pressure, a CO2 permeance of 1.02 × 10?8 mol/m2· s· Pa and a CO2/CH4 selectivity of 6.8 are obtained, which is promising for CO2 separation.  相似文献   

16.
The photoelectrochemical properties of a high molar extinction coefficient charge transfer organic dye containing thienylfluorene segment called FL, and the effect of incorporating TiO2 nanotube (TiNT) in TiO2 nanoparticle film along with the above dye on the photovoltaic performance of dye-sensitized solar cells (DSSCs) were investigated. The influence of soaking time of the TiO2 electrode in dye solution and the effect of varying its concentration, on the solar cell efficiency was also studied. Cyclic voltammetric (CV) analysis revealed the linear relationship between the anodic peak current and the scan rate, indicating a surface-confined diffusion process.The surface morphology of TiNT was characterized using SEM, TEM and XRD. The open-circuit voltage (VOC) of the DSSC increased with the increase in the wt% of TiNT and shows optimal value at about 5 wt%, which is correlated with the suppression of the electron recombination as found out from the electron lifetime studies.The electrochemical impedance spectroscopy (EIS) technique was employed to quantify the charge transport resistance (Rct) and electron lifetime under different ratios of the TiNT/nanoparticle. The electron lifetimes of the DSSCs based on FL and N3 dye were very close to one another and the DSSC based on the FL showed respectable photovoltaic performance of ca. 7.8% under the light intensity of 100 mW cm−2 (AM 1.5G).  相似文献   

17.
Jingbo Zhang  Arie Zaban   《Electrochimica acta》2008,53(18):5670-5674
This work entails a method to improve the performance of dye-sensitized nanocrystalline TiO2 solar cells by adding surface passivating elements to the electrolyte. The presence of either CO2, Li2CO3 or K2CO3 in electrolyte increases both the photocurrent and the photovoltage, resulting in higher overall conversion efficiency of these solar cells. The additives are used to form a passivation layer of lithium carbonate on the dye free surface of the TiO2 nanoparticles and the conductive substrate. This layer suppresses the rate of the main recombination reaction between the photoinjected electrons and the oxidized ions in the electrolyte solution. While blocking part of the recombination, the lithium carbonate layer allows motion of the Li+ ions towards the TiO2 surface for charge screening. Consequently using this simple treatment, the conversion efficiency of dye-sensitized solar cell most improved by 17.2% (from 6.4% to 7.5%).  相似文献   

18.
The dye-sensitized Zn2SnO4 solar cells were treated with Al3+ ions to enhance the power conversion efficiency for the first time. Usually, the surface treatment on photoanodes with Al3+ ions generated an overlayer of Al2O3. For Zn2SnO4 photoanode, another reaction pathway was found. The treatment with Al3+ ions led to decreasing open circuit voltage, and a 22.6% enhancement of efficiency. Mott–Schottky measurements revealed that the flat band of Zn2SnO4 had a positive shift owing to the introduction of Al3+ ions. XPS confirmed that Al3+ ions were introduced into the lattice of Zn2SnO4 and occupied the position of Sn4+, resulting in decreased conduction band edge. TEM demonstrated the size of Zn2SnO4 nanoparticles became larger due to the reaction of Al3+ with Zn2SnO4. Although the adsorption amounts of dyes lowered by 21%, the driving force for electron injection was greatly enhanced as a result of decreased conduction band edge, resulting in significantly enhanced cell efficiency.  相似文献   

19.
The electrochemical behaviors of the tri-iodide (I3)/iodide (I) redox couple of symmetric cells were investigated by cyclic voltammetry, steady-state polarization, chronocoulometry, and electrochemical impedance spectroscopy. 1,3-Dialkylimidazolium cations affected the characteristics of the Pt electrode/electrolyte interface by adsorbing on the Pt electrode, as a result of electrostatic interactions, and further affected the reduction of I3 on the Pt electrode. Capacitance of the double layers of the Pt electrode/electrolyte interface was chiefly determined by capacitance of the compact layer according to the Helmoholtz theory.  相似文献   

20.
Electrophoretic deposition (EPD) method is employed to obtain mesoporous TiO2 film on a titanium (Ti) foil; the film is then mechanically compressed and sintered at 350 °C before being subjected to dyeing. A comprehensive study was made on the mechanistic aspects of the EPD process. The dye-sensitized solar cell (DSSC) using the thus formed TiO2 film rendered a power conversion efficiency (Eff.) of 6.5%. Effects of various compression pressures on the photovoltaic parameters and on other characteristic parameters of the pertinent DSSCs are studied. Electrochemical impedance spectroscopy (EIS) is applied for the first time, using a novel equivalent model, to study the impedance behavior of the DSSC with this type of TiO2 film. We also obtain characteristic parameters of the TiO2 photoanode by using EIS. The coordination number of the TiO2 film, and the ratio of charge transfer resistances of electron recombination and electron transport are also obtained and analyzed. Moreover, we employ a multilayer approach and increase the film thickness to prepare TiO2 films with the same coordination number and porosity; DSSCs using such TiO2 films obtained from P90 and P25 rendered efficiencies of 6.5% and 5.24%, respectively. Scanning electron microscopy (SEM) micrographs are obtained to characterize the TiO2 films formed by the EPD technique and laser-induced transient technique is used to estimate the electron lifetime in the TiO2 films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号