首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2019,45(15):18743-18750
Due to their ultra-high theoretical capacity and low discharge potential, rich Sn-based materials are considered promising candidates for lithium ion battery (LIB) anodes; however, the development of SnOx electrodes is restricted by their low conductivity and severe volume change during repeated cycling. In this study, carbon matrix encapsulating heterostructured SnOx ultrafine nanoparticles (SnOx@C/rGO) were synthesized in situ through a facile solvent mixing, followed by thermal calcination. During the decomposition of the Sn-organic precursor, the sizes of the as-prepared SnOx nanoparticles were strictly controlled to 5–10 nm; they were intimately wrapped by the in-situ formation of ultrathin carbon layers, which prevented the agglomeration of nanograins. Furthermore, the SnOx@C nanoparticles were evenly anchored on the surface of reduced graphene oxide (rGO) to construct a highly conductive carbon framework. It is notable that the carbon matrix prepared in situ can accommodate the volumetric change of SnOx and facilitate the transport of Li+ ions during continuous cycling. Benefiting from the synergistic effect between the SnOx nanoparticles and carbon matrix prepared in situ, the heterostructured SnOx@C/rGO will confer improved structural stability and reaction kinetics for lithium storage. It delivers a stable reversible discharge capacity of 1092.2 mAh g−1 at a current rate of 0.1 A g−1, and enhanced cycling retention with a capacity of 447.8 mAh g−1 after 1200 cycles at a current rate of 5.0 A g−1. This strategy provides a rational avenue to design oxide anodes with efficient hierarchical structure for LIB development.  相似文献   

2.
《Ceramics International》2022,48(16):23334-23340
Titanium niobate prepared by traditional techniques has the shortcomings of low ion diffusion coefficient as well as poor electrical conductivity, which drastically reduce its applicability. In this work, we prepare carbon coated Ti2Nb10O29 hollow submicron ribbons (Ti2Nb10O29@C HSR) using a simple electrospinning procedure. As anode material for lithium-ion batteries (LIBs), it delivers a high charge capacity of 259.7 mAh g?1 at 1 C with low capacity loss of 0.013% in long-term cycles. Increased the current density to 5 C, Ti2Nb10O29@C HSR can maintain a reversible capacity of 189.9 mAh g?1, indicating its good rate performance. Additionally, this work uses in-situ X-ray diffraction (XRD) to provide an explanation for the lithium storage process in Ti2Nb10O29@C HSR, demonstrating the high reversibility during charge/discharge cycles. Therefore, Ti2Nb10O29@C HSR has outstanding cycle adaptability and structural reversibility to be a promising anode for LIBs.  相似文献   

3.
《Ceramics International》2016,42(13):14490-14498
The spherical ferroelectric PbZr0.52Ti0.48O3 (PZT 52/48) nanoparticles are prepared via simple and environment friendly high temperature solid state method. The crystal structure and morphology of these particles are characterized by X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), and field emission scanning electron microscopy (FESEM). XRD analysis and selected area electron diffraction (SAED) pattern of PZT particles revealed its crystalline nature. The energy involved in the synthesis especially during the initiation and termination processes for the formation of PZT particles is found from the high temperature calorimetric study. These particles are spherical in nature with an average diameter of ≤20 nm. The bulk and surface chemical composition of these particles are investigated by Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). XPS study reveals that the prepared PZT particles contain titanium ion in two different oxidation states namely Ti3+ and Ti4+. The PZT particles exhibit high permittivity with relatively low dielectric loss. From temperature dependent dielectric analysis, it is seen that there is a switchable dielectric phase transition at or above 80 °C.  相似文献   

4.
Improving the piezoelectric activity of lead zirconate titanate (PZT) ceramics is of great importance for practical applications. In this study, the influence of Pr3+ doping on the ferroelectric phase composition, microstructure, and electric properties on the A-site of (Pb1-1.5xPrx)(Zr0.52Ti0.48)O3 is extensively investigated. A dense and fine microstructural sample is obtained with the introduction of Pr3+. The results show that the morphotropic phase boundary (MPB) moves to the rhombohedral phase region. The rhombohedral and tetragonal phases exhibit an ideal coexistence in the 4 mol.% Pr3+ doped (PPZT4) samples. Lead vacancy and the reduction of the potential energy barrier are considered to be the key mechanisms for donor doping, which is upheld by the Pr3+ doping. Combining the I-E hysteresis loops with the P-E hysteresis loops, it becomes apparent that both contribution maximums of the domain switching and residual polarisation are in PPZT4. Moreover, the thermal aging resistance of PZT is improved by doping, and the temperature stability is optimised from 83% in PZT to 96% in PPZT4. Hence, an appropriate amount of Pr3+ doping can effectively improve the piezoelectric activity of PZT ceramics in the MPB area and optimise the performance stability of the material under application temperatures.  相似文献   

5.
《Ceramics International》2020,46(9):12965-12974
“Zero-strain” Li4Ti5O12 has become one of the most promising anode materials for lithium-ion battery but its low electronic and ionic conductivity lead to the poor rate capability. Herein, the high-rate performance and the cycling stability of Li4Ti5O12 have been largely enhanced by replacing Li and Ti with a little amount of Mg and La, respectively. The synergistic modulation mechanism of Mg and La co-doping on the crystal/electronic structure and electrochemical performances has been unveiled. Firstly, Mg and La co-doping enlarges the lattice parameters, unit cell volume and Li1–O bond. These facilitate the lithium-ion migration and enhance the rate capability. Secondly, Ti–O bond is shortened which enhances the structure stability and cyclic performance. Thirdly, the first-principles calculations further confirm that Mg/La co-doping modulates the electronic density of states and decreases the Li+ migration barrier. The polarization and charge transfer impedance are effectively alleviated. Moreover, the diffusion coefficient of lithium ions is further improved because of the reduction of much more Ti3+. At 10C, it delivers a discharge capacity of 107.8mAh/g after 500cyles which reserves 92.2% of the initial capacity. This study provides some insights into optimizing the electrochemical performances of Li4Ti5O12 by tuning the crystal and electronic structure with lattice doping.  相似文献   

6.
《Ceramics International》2017,43(5):4655-4662
Mn3O4/N-doped graphene (Mn3O4/NG) hybrids were synthesized by a simple one-pot hydrothermal process. The scanning electron microscopy (SEM), transition electron microscopy (TEM), X-ray powder diffraction (XRD), Thermogravimetric analysis (TG), Raman Spectroscopy and X-ray photoelectron spectroscopy (XPS) were used to characterize the microstructure, crystallinity and compositions. It is demonstrated that Mn3O4 nanoparticles are high-dispersely anchored onto the individual graphene nanosheets, and also found that, in contrast with pure Mn3O4 obtained without graphene added, the introduction of graphene effectively restricts the growth of Mn3O4 nanoparticles. Simultaneously, the anchored well-dispersed Mn3O4 nanoparticles also play a role as spacers in preventing the restacking of graphene sheets and producing abundant nanoscale porous channels. Hence, it is well anticipated that the accessibility and reactivity of electrolyte molecules with Mn3O4/NG electrode are highly improved during the electrochemical process. As the anode material for lithium ion batteries, the Mn3O4/NG hybrid electrode displays an outstanding reversible capacity of 1208.4 mAh g−1 after 150 cycles at a current density of 88 mA g−1, even still retained 284 mAh g−1 at a high current density of 4400 mA g−1 after 10 cycles, indicating the superior capacity retention, which is better than those of bare Mn3O4, and most other Mn3O4/C hybrids in reported literatures. Finally, the superior performance can be ascribed to the uniformly distribution of ultrafine Mn3O4 nanoparticles, successful nitrogen doping of graphene and favorable structures of the composites.  相似文献   

7.
《Ceramics International》2017,43(14):11058-11064
This paper introduces a unique porous yolk-shell structured Co3O4 microball, which is synthesized by spray pyrolysis from precursor solution with polyvinylpyrrolidone (PVP) additive. PVP acts as an organic template in the pyrolytic reaction facilitating the formation of yolk-shell structure. The electrochemical properties of porous yolk-shell Co3O4 microballs evaluated as anode materials for lithium ion batteries exhibit high initial columbic efficiency of 77.9% and high reversible capacity of 1025 mAh g−1 with capacity retention of 98.8% after 150 cycles at 1 A g−1. In contrast, the hollow microballs obtained without PVP addition show obvious capacity decay from 1033 to 748 mAh g−1 after 150 cycles with the capacity retention of 72.3%. In addition, the microballs with porous yolk-shell structure exhibit better rate performance. The superior electrochemical performance is mainly attributed to the unique porous yolk-shell structure which provides large voids to buffer volume expansion and enlarge the contact area with the electrolyte, shortening the diffusion path of the lithium ions.  相似文献   

8.
9.
Lead zirconate titanate (PZT) ceramics (Zr/Ti = 52/48) have been modified with different quantities of neodymium oxide (Nd2O3). The preparation was carried out via the solid-state-reaction route. The samples were calcined and sintered at 850°C and 1200°C, respectively. The structural evolution and the microstructure were investigated using an X-ray diffractometer (XRD) and a scanning electron microscope (SEM), respectively. The physical properties such as dielectric constants, piezoelectric coefficients, density etc. were also studied.  相似文献   

10.
Ferroelectric films suffer from both aging and degradation under high ac-field drive conditions due to loss of polarization with time. In this study, the roles of defect chemistry and internal electric fields on the long-term stability of the properties of piezoelectric films were explored. For this purpose, lead zirconate titanate (PZT) films with a Zr/Ti ratio of 52/48 doped with Mn- (PMZT) or Nb- (PNZT) were deposited on Pt coated Si substrates by the sol-gel method. It was demonstrated that the magnitude of the internal field is much higher in PMZT films compared to PNZT films after poling in the temperature range of 25-200°C under an electric field of −240 kV/cm. The development of the internal field is thermally activated, with activation energies from 0.5 ± 0.06 to 0.8 ± 0.1 eV in Mn doped films and from 0.8 ± 0.1 to 1.2 ± 0.2 eV in Nb doped films. The different activation energies for imprint suggests that the physical mechanism underlying the evolution of the internal field in PMZT and PNZT films differs; the enhanced internal field upon poling is attributed to (a) alignment of oxygen vacancy—acceptor ion defect dipoles (, ) in PMZT films, and (b) thermionic injection of electron charges and charge trapping in PNZT films. In either case, the internal field reduces back switching, enhances the remanent piezoelectric properties, and dramatically improves the aging behavior. PMZT films exhibited the greatest enhancement, with reduced high temperature (180°C) aging rates of 2%-3%/decade due to improved stability of the poled state. In contrast, PNZT films showed significantly larger high temperature aging rates (15.5%/decade) in the piezoelectric coefficient, demonstrating that the fully poled state was not retained with time.  相似文献   

11.
ZnO is an important functional material, and a nanotube structure is beneficial for various applications. Here, we report the facile synthesis and electrochemical properties of carbon-coated ZnO nanotube materials as Li rechargeable battery anodes. ZnO nanorod was first synthesized via a simple hydrothermal method. Subsequently, the material was annealed with a carbon precursor, forming free-standing, carbon-coated ZnO nanotubes. The carbon-coated nanotube structure is beneficial to alleviate volume changes of the ZnO active material during Li insertion and extraction processes as well as to improve the electrochemical reaction kinetics. Electrochemical test results demonstrate that the carbon-coated ZnO nanotube electrodes deliver improved the cycling performance compared with ZnO nanorod electrodes. Better rate performance than carbon-coated ZnO nanoparticle electrodes was also achieved.  相似文献   

12.
《Ceramics International》2017,43(2):1650-1656
To improve the electrochemical and anti flatulence performance of Li4Ti5O12, Ag modified Li4Ti5O12 (LTO) with high electrochemical performance as anode materials for lithium-ion battery was synthesized successfully by two-step solid phase sintering and subsequent electroless plating process in the presence of silver. The effect of Ag modification on the physical and electrochemical properties were investigated by the extensive material characterization of X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM). The results showed that the samples possessed single spinel structure, it could be observed that the LTO/Ag composite and the pure LTO shared the same vibration frequencies, which indicated that the crystal structure of LTO didn’t change after electroless plating process, and the particles were uniformly and regularly shaped within 0.5–1.0 µm. Electrochemical performance of the samples were evaluated by the charging and discharging, cyclic voltammetry, electrochemical impedance spectroscopy, cycling and rate tests. It's obvious that the LTO/Ag composite prepared at the 10 min of electroless plating showed the highest performance with capacitance of 182.3 mA h/g at 0.2 C current rates. What's more, the LTO/Ag composites still maintained 92% of its initial capacity even after 50 charge/discharge cycles. Modification of appropriate Ag not only benefits the reversible intercalation and deintercalation of Li+, but also improves the diffusion coefficient of lithium ion. Besides, modification of appropriate Ag lower electrochemical polarization leads to higher conductivity and cycle performance of LTO, which is consistent with the results of the best reversible capacities.  相似文献   

13.
《Ceramics International》2022,48(22):33200-33207
Among a variety of host materials for lithium storage, titanium-niobium oxides exhibit great potential in application. Herein, Ti2Nb10O29 nanowire is synthesized via an electrospinning method. Compared with bulk Ti2Nb10O29 prepared by solid-state approach, the electrochemical properties of Ti2Nb10O29 nanowire is better. According to the galvanostatic charging-discharging test, the initial capacity of 232.8 mAh g?1 for Ti2Nb10O29 nanowire is displayed. Besides, it exhibits superior rate performance. With the current density set as 0.5, 1, 2, 3, 4 and 5 C, the Ti2Nb10O29 nanowire can deliver the specific capacity of 251.3, 240.3, 221.8, 205.3, 188.1 and 174.5 mAh g?1, respectively. Furthermore, its cycling performance is superior. The capacity retention of Ti2Nb10O29 nanowire is 85.90% after 900 cycles at 12 C, which is obviously superior than that of bulk Ti2Nb10O29 (25.16%). Finally, a Ti2Nb10O29/LiCoO2 full cell is fabricated, which exhibits excellent electrochemical performance, demonstrating its potential for practical application.  相似文献   

14.
《Ceramics International》2020,46(17):26923-26935
In this study, spinel lithium titanate (Li4Ti5O12, LTO) anode materials were synthesized from two titanium sources (P25 TiO2, 100% anatase TiO2) using a spray-drying method and subsequent calcination at various temperatures. The electrochemical performance of both a Li/LTO half cell and a LiNi0.5Mn1.5O4/LTO (LNMO/LTO) full cell were investigated. The electrochemical performance of the LTO material prepared from P25 TiO2 was superior to that of the LTO prepared from 100% anatase TiO2. After modification of LTO material with AlPO4, the LTO coated with 2 wt% of AlPO4 (denoted “2%AlPO4-LTO”) provided the best performances. The specific (delithiation) capacities of the 2%AlPO4-LTO anode material was 189.7 mA h g−1 at 0.1C/0.1C, 184.5 mA h g−1 at 1C/1C, 178.8 mA h g−1 at 5C/5C, and 173.1 mA h g−1 at 10C/10C. From long-term cycling stability tests, the specific capacity at the first cycle and the capacity retention after cycling were 185.5 mA h g−1 and 98.06%, respectively, after 200 cycles at 1C/1C and 182.1 mA h g−1 and 99.18%, respectively, after 100 cycles at 1C/10C. For the LNMO/2%AlPO4-LTO full cell, the average specific capacity (delithiation) and coulombic efficiency after the first five cycles were 164.8 mA h g−1 and 93.30%, respectively, at 0.1C/0.1C. The specific capacities at higher C-rates were 156.1 mA h g−1 at 0.2C/0.2C, 135.7 mA h g−1 at 1C/1C, 97.5 mA h g−1 at 3C/3C, and 46.5 mA h g−1 at 5C/5C. After twenty-five cycles, the C-rate returned to 1C/1C and the specific capacity, coulombic efficiency, and capacity retention were maintained at 134.1 mA h g−1, 99.17%, and 98.82%, respectively.  相似文献   

15.
One of the main issues for titanium-based anode materials is their poor electronic conductivity and this issue can affect their rate performance. For conquering this drawback, many approaches have been proposed. In this report, SrLi2Ti6O14 as one of the titanium-based anode materials is prepared via a facile sol–gel method and subsequently it has been composited with silver to elevate its electronic conductivity. Upon the analysis of electrochemical results, the SrLi2Ti6O14/Ag composite with 6?wt% Ag can deliver an initial capacity of 164.9?mAh?g?1. After 50 cycles, the sample can still retain 154.6?mAh?g?1 with 93.8% retention of the first cycle. Meanwhile, the SrLi2Ti6O14/Ag composite with 6?wt% Ag can also exhibit good rate capacities, even at 300?mA?g?1, its capacity can be firmly kept at 140.0?mAh?g?1. In addition, in situ X-ray diffraction characterization shows the structural reversibility of the SrLi2Ti6O14/Ag composite with 6?wt% Ag during cycling. All the electrochemical results indicate that the SrLi2Ti6O14/Ag composite with 6?wt% Ag can be a promising anode material for lithium ion batteries.  相似文献   

16.
Bismuth can alloy with lithium to generate Li3Bi with the volumetric capacity of about 3765 mAh cm?3 (386 mAh g?1), rendering bismuth-based materials as attractive alloying-type electrode materials for rechargeable batteries. In this work, bismuth-based material Bi5Nb3O15 @C is fabricated as anode material through a traditional solid-state reaction with glucose as carbon source. Bi5Nb3O15 @C composite is well dispersed, with small particle size of 0.5–2.0?µm. The electrochemical performance of Bi5Nb3O15 @C is reinforced by carbon-coated layer as desired. The Bi5Nb3O15 @C exhibits a high specific capacity of 338.56 mAh g?1 at a current density of 100?mA?g?1. And it also presents an excellent cycling stability with a capacity of 212.06 mAh g?1 over 100 cycles at 100?mA?g?1. As a comparison, bulk Bi5Nb3O15 without carbon-coating only remains 319.62 mAh g?1 at 100?mA?g?1, revealing poor cycle and rate performances. Furthermore, in-situ X-ray diffraction experiments investigate the alloying/dealloying behavior of Bi5Nb3O15 @C. These insights will benefit the discovery of novel anode materials for lithium-ion batteries.  相似文献   

17.
《Ceramics International》2021,47(24):34242-34252
When tin oxide (SnO2) is used in the anode of lithium-ion batteries, its capacity decreases dramatically due to poor conductivity and volume effects during the electrochemical cycle. Although composites with traditional carbon-based materials can improve this shortcoming, the low capacitance of such materials still limits the capacity of the composites. Therefore, we applied defect engineering to SnO2/C composite electrodes for the first time, and prepared D-MWCNTs@SnO2@N–C composite electrodes with hollow rod structures. Defects were constructed in the carbon materials to promote electron diffusion and ion storage active sites. The hollow structure can adapt to the volume change that occurs during Li-ion insertion/desorption. In addition, the detachment of F atoms and the insertion of N atoms, which are chemical processes that occur on the surface of carbon materials, promote an increase in surface porosity and defect density, thereby providing additional lithium storage sites. The double carbon effect caused by defect engineering provides a multidimensional transport path and rapid migration rate for Li-ions, which enables the electrode to display excellent electrochemical performance; thus, this work could lead to the preparation of next-generation anode materials with high energy storage capacity, high rate capability and high cycle stability.  相似文献   

18.
In this work, to formulate piezoceramic systems such as PbZr0.52Ti0.48O3 (PZT) for low‐temperature co‐fired ceramic (LTCC)‐based devices, liquid‐phase sintering approach is demonstrated. ZnO–B2O3 (ZB) binary glass system is used as sintering aid. X‐ray diffraction (XRD) study confirms the formation of morphotropic phase boundary (MPB; tetragonal + rhombohedral) in PZT prepared by hydrothermal route. ZB is found to induce change in tetragonal/rhombohedral ratio in MPB of PZT. 1%ZB in PZT is found to raise the tetragonality from 71% to 92% in MPB region of PZT. ZB addition in PZT has reduced the sintering temperature from 1250 to 825°C for relative density about 91% with sustaining MPB phase. 1% ZB content is optimal percentage to enhance sinterability and relative density. Uniform dispersion of glass in PZT matrix is confirmed by SEM images. ZB content in PZT is found to controlling grain growth during sintering. Highest dielectric constant and lowest dielectric loss with low sintering temperature (825°C) of 1%ZB among all glass added in PZT exhibit technical suitability of 1%ZB + PZT to use as LTCC‐based energy storage devices.  相似文献   

19.
《Ceramics International》2020,46(7):9249-9255
Nowadays, Lithium-ion batteries (LIBs) are prevalently applied in numerous areas, leading to increasing demand of innovative electrodes with high specific capacities. An advanced CuGeO3/reduced graphene oxide (rGO) structure is designed and fabricated as the anode material taking the advantage of considerable capacity offered by CuGeO3 and stable framework constructed by rGO. The as-prepared CuGeO3 with 30 wt% GO addition exhibits the best electrochemical performance. Specifically, a reversible charge capacity of 909 mAh·g−1 with high coulombic efficiency of 91.49% at the current density of 100 mA g−1 after 200 cycles is demonstrated, and the rate capacity retains 747.6 mAh·g−1 with 91.59% capacity retention. These results indicate that the CuGeO3/rGO composite holds great potential in next-generation LIBs.  相似文献   

20.
《Ceramics International》2016,42(6):6874-6882
Due to the characteristics of an electronic insulator, Na2Li2Ti6O14 always suffers from low electronic conductivity as anode material for lithium storage. Via Ag coating, Na2Li2Ti6O14@Ag is fabricated, which has higher electronic conductivity than bare Na2Li2Ti6O14. Enhancing the Ag coating content from 0.0 to 10.0 wt%, the surface of Na2Li2Ti6O14 is gradually deposited by Ag nanoparticles. At 6.0 wt%, a continuous Ag conductive layer is formed on Na2Li2Ti6O14. While, particle growth and aggregation take place when the Ag coating content reaches 10.0 wt%. As a result, Na2Li2Ti6O14@6.0 wt% Ag displays better cycle and rate properties than other samples. It can deliver a lithium storage capacity of 131.4 mAh g−1 at 100 mA g−1, 124.9 mAh g−1 at 150 mA g−1, 119.1 mAh g−1 at 200 mA g−1, 115.8 mAh g−1 at 250 mA g−1, 111.9 mAh g−1 at 300 mA g−1 and 109.4 mAh g−1 at 350 mA g−1, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号