首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《应用陶瓷进展》2013,112(1):55-59
The densification of ZrC ceramics doped with different contents of TiC prepared by spark plasma sintering at the temperatures between 1750 and 1850°C has been investigated. The microstructure and mechanical properties of the ceramics have been characterised. It was shown that TiC additions effectively promoted the densification process by forming (Zr,Ti)C solid solution. The relative densities and mechanical properties of ZrC samples increased with the increasing of TiC content or the sintering temperature. Ceramic with the content of TiC up to 10 vol.-% sintering at 1850°C showed an excellent combination of properties including a relative density of 98.7%, hardness of 20.8?GPa and flexural strength of 605?MPa.  相似文献   

2.
Micron-sized boron carbide (B4C) powders were subjected to spark plasma sintering (SPS) under temperature ranging from 1700 °C to 2100 °C for a soaking time of 5, 10 and 20 min and their densification kinetics was determined using a creep deformation model. The densification mechanism was interpreted on the basis of the stress exponent n and the apparent activation energy Qd from Harrenius plots. Results showed that within the temperature range 1700–2000 °C, creep deformation which was controlled by grain-boundary sliding or by interface reaction contributed to the densification mechanism at low effective stress regime (n = 2,Qd = 459.36 kJ/mol). While at temperature higher than 2000 °C or at high stress regime, the dominant mechanism appears to be the dislocation climb (n = 6.11).  相似文献   

3.
《Ceramics International》2023,49(5):7404-7413
TiB2 composite ceramics containing different amounts of Ti and TiC were fabricated via spark plasma sintering (SPS), and effects of their addition contents on the microstructure and mechanical properties were discussed. The newly formed phases of TiB with a cubic lattice structure in the composite ceramics were observed. At a relatively low temperature of 1510 °C, pressure of 50 MPa, and holding time of 5 min, the TiB2 composite ceramic with 30 wt% TiC and 10 wt% Ti additions acquired an excellent strength of 727 MPa and a high toughness of 7.62 MPa m1/2. The improvement in strength and toughness was attributed to the mixed fracture mode, second phase strengthening, and increased energy consumption for crack propagation caused by the newly formed phases and fine TiC particles. In addition, the significant effects of the Ti and TiC addition contents on the densification temperature and mechanical properties of the composite ceramics were determined using analysis of variance (ANOVA).  相似文献   

4.
《应用陶瓷进展》2013,112(7):394-398
Abstract

Abstract

Highly densified Al2O3-TiC-Ti3SiC2 composites were fabricated by spark plasma sintering technique and subsequently characterised. From fracture surface observation, it is found that Al2O3 is 0·2-0·4?μm, TiC is 1-1·5?μm and Ti3SiC2 is 1·5-5?μm in grain size. With the increase in Ti3SiC2 volume contents, Vickers hardness of the composites decreases because of the low hardness of monolithic Ti3SiC2. The fracture toughness rises remarkably when the contents of Ti3SiC2 increase, which is attributed to the pullout and microplastic deformation of Ti3SiC2 grains. At the same time, the flexural strength of the composites shows a considerable improvement as well. The electrical conductivity rises significantly as the Ti3SiC2 contents increase because of the formation of Ti3SiC2 network and the increase in conductive phase contents.  相似文献   

5.
In this research, we investigated the effects of SiC and multi-walled carbon nanotube (MWCNTs) addition on the densification and microstructure of titanium nitride (TiN) ceramics. Four samples including monolithic TiN, TiN-5?wt% MWCNTs, TiN-20?vol% SiC and TiN-20?vol% SiC-5?wt% MWCNTs were prepared by spark plasma sintering at 1900?°C for 7?min under 40?MPa pressure. X-ray powder diffraction patterns and scanning electron microscope (SEM) micrographs of the prepared ceramics showed that no new phase was formed during the sintering process. The highest calculated relative density was related to the TiN ceramic doped with 20?vol% SiC, while the sample doped with 5?wt% MWCNTs presented the lowest density. In addition, the SEM investigations revealed that the addition of sintering aids e.g. SiC and MWCNTs leads to a finer microstructure ceramic. These additives generally remain within the spaces among the TiN particles and prohibit extensive grain growth in the fabricated ceramics.  相似文献   

6.
《Ceramics International》2017,43(11):8475-8481
ZrC-based composites were consolidated from ZrC and TiB2 powders by the Spark Plasma Sintering (SPS) technique at 1685 °C and 1700 °C for 300 s under 40-50-60 MPa. Densification, crystalline phases, microstructure, mechanical properties and oxidation behavior of the composites were investigated. The sintered bodies were composed of a (Zr,Ti)C solid solution and a ZrB phase. The densification behaviors of the composites were improved by increasing the TiB2 content and applied pressure. The highest value of hardness, 21.64 GPa, was attained with the addition of 30 vol% TiB2. Oxidation tests were performed at 900 °C for 2 h and the formation of ZrO2, TiO2 and B2O3 phases were identified by using XRD.  相似文献   

7.
The impact of Si3N4 and SiC additives incorporation in the microstructure and sintering behavior of TiB2-based composites were studied. Three ceramic composites including TiB2–Si3N4, TiB2–SiC, and TiB2–SiC–Si3N4 were manufactured by spark plasma sintering (SPS) at 1950 °C for 8 min under 35 MPa. The acquired ceramics were analyzed by X-ray diffractometry and scanning electron microscopy. In addition, the sintering thermodynamic was investigated using the HSC Chemistry package. X-ray diffraction patterns of the prepared ceramics revealed the in-situ formation of graphite and boron nitride in the final composites initiated from SiC and Si3N4, respectively. The thermodynamic assessments proved the role of liquid phase sintering on the sinterability enhancement of all composite samples. Field emission scanning electron microscopy and energy-dispersive X-ray spectroscopy verified the in-situ formation of both BN and graphite components in the sample containing SiC and Si3N4 additives. Finally, the fractographical investigations clarified the transgranular breakage as the main fracture mode in the TiB2-based ceramics.  相似文献   

8.
In an attempt to develop the composition and properties of W2C-(W,Ti)C-TiC and WC-WC1-x-VC-V super hardmetals, spark plasma sintering (SPS) method was implemented. WC powders were mixed separately with 10?wt% Ti and 10?wt% V in a high energy mixer mill and sintering processes were performed at temperatures of 2150 and 2000?°C, respectively. XRD investigations revealed the formations of TiC and (Ti,W)C as the reaction products in WC-10?wt% Ti composite. Moreover, the interfacial reaction between WC and V led to the formation of WC1-x and VC compounds. A higher bending strength (613?±?25?MPa) and fracture toughness (4.1?±?0.58?MPa?m1/2) were obtained for WC-10?wt% V samples compared to WC-10?wt% Ti, While the WC-10?wt% Ti composite showed a higher value of hardness (3128?±?42 Vickers) in comparison to WC-10?wt% V (2632?±?39 Vickers), which can act as a super hard cermet.  相似文献   

9.
The combined effects of high-energy ball milling (HEBM) and reactive spark plasma sintering (R-SPS) of HfSi2 and C powder mixture on the densification and microstructure of nanostructured HfC-SiC composites were investigated. HEBM significantly promoted the densification and improved the microstructure of the HfC-SiC composites. In contrast, the reactions between HfSi2 and C did not directly promote the densification of the HfC-SiC composites. While the reaction was mostly completed at 1300 °C, the onset temperature of significant densification was 1610 °C. Fine and homogeneously distributed HfC and SiC particles formed by HEBM and R-SPS were the key factors for promoting the densification of the HfC-SiC composites. The fine particles had high surface energy, which provided enough driving force for densification. In addition, the homogeneously distributed SiC particles effectively suppressed the growth of HfC matrix grains during densification.  相似文献   

10.
《Ceramics International》2019,45(11):13799-13808
Almost full density (>99% theoretical density (ρth)) was achieved for ZrB2-20vol% SiC-Xwt.% Ta (X = 2,5, 5 and 10) composites after Spark Plasma Sintering (SPS) (Temperature: 1900 °C, Pressure: 50 MPa; Time: 3 min). The microstructure of ZrB2-based composites exhibited core-rim structure and it consists of major crystalline phases (ZrB2 core, (Zr, Ta)B2 rim, SiC), minor amounts of ZrO2 and (Zr, Ta)C solid solution phases. Both the specific weight (from 22.91 to 18.77 mg/cm2) and oxide layer thickness (401–195 μm) of ZrB2-20vol% SiC composites decreased with increasing addition of Ta after the isothermal oxidation at 1500 °C for 10 h in air. The cross-sectional microstructure of oxidized samples displayed presence of a stack of three distinctive layers, which includes thick dense SiO2 top layer, SiC depleted intermediate layer and unreacted bulk. The present work clearly demonstrated the advantage of tantalum addition in improving the oxidation resistance of ZrB2-20vol% SiC.  相似文献   

11.
Taguchi design of experiments methodology was used to determine the most influential spark plasma sintering (SPS) parameters on densification of TiB2–SiC ceramic composites. In this case, four processing factors (SPS temperature, soaking time, applied external pressure and SiC particle size) at three levels were examined in order to acquire the optimum conditions. The statistical analysis identified the sintering temperature as the most effective factor influencing the relative density of TiB2–SiC ceramics. A relative density of 99.5% was achieved at the optimal SPS conditions; i.e. temperature of 1800?°C, soaking time of 15?min and pressure of 30?MPa by adding 200-nm SiC particulates to the TiB2 matrix. The experimental measurements and predicted values for the relative density of composite fabricated at the optimum SPS conditions and reinforced with the proper SiC particle size were almost similar. The mechanisms of sintering and densification of spark plasma sintered TiB2–SiC composites were discussed in details.  相似文献   

12.
《Ceramics International》2020,46(7):9070-9078
In this study, the influence of adding 0, 10, 20, and 30 vol% SiCw on the microstructure and physical-mechanical properties (relative density (RD), flexural strength, and Vickers hardness) of TiC-3 wt% WCn was investigated. All designed samples were spark plasma sintered under the same conditions: sintering temperature of 1900 °C, external pressure of 40 MPa, and dwell time of 7 min. Microstructural evaluation and relative density calculation revealed that the additives were dispersed homogeneously in the TiC matrix. Based on the Archimedes principles, RD values of >100% were measured for the composite samples with 20 and 30 vol% SiCw, due to not accounting the formation of non-stoichiometric TiC and (Ti,W)C phases in the calculations. On the contrary, the lowest RD was related to the sample with 10 vol% SiCw. On the other hand, the most significant values of Vickers hardness (28.6 GPa) and flexural strength (694 MPa) were obtained for TiC-3 wt% WCn and TiC-3 wt% WCn-20 vol% SiCw composite samples, respectively.  相似文献   

13.
《Ceramics International》2023,49(7):10748-10755
Ultra-high temperature HfB2 ceramic with nearly full densification is achieved by using gradient sintering process of SPS without any additives. The effect of the sintering temperature on the densification behavior, relative density, microstructure, mechanical and thermionic properties is systematically investigated. The results show that the fast densification of HfB2 ceramic occurs at the heating stage, and the highest relative density of 96.75% is obtained at T =1950 °C, P = 60 MPa and t =10min. As the temperature is increased from 1800 to 1950 °C, the grain size of HfB2 increases from 6.12 ±1.33 to 10.99 ± 2.25 μm, and refined microstructure gives the excellently mechanical properties. The highest hardness of 26.34 ±2.1GPa, fracture toughness of 7.12 ± 1.33 MPa m1/2 and bending strength of 501 ±10MPa belong to the HfB2 ceramic obtained at T =1950°C. Moreover, both the Vickers hardness and fracture toughness obey the normal indentation size effect. HfB2 ceramic also exhibits the thermionic emission characterization with the highest current density of 6.12 A/cm2 and the lowest work function of 2.92 eV.  相似文献   

14.
A TiC segregated network structure (SNS) approach was utilised to improve the thermoelectric properties of SiC. Different amounts of TiC particles were dry coated on SiC granules to form electrically conductive SNS; then the powder mixtures were spark plasma sintered at 2200°C. The TiC-SNS simultaneously increased the electrical and decreased thermal conductivity of SiC but adversely affected the Seebeck coefficient. By adding 10 vol% TiC, an ≈ 800% increase in electrical conductivity and a ≈ 50% decrease in thermal conductivity were achieved, but the Seebeck coefficient deteriorated due to the metallic nature of the material. A maximum ZT of 5.04 × 10−3 was achieved at 923 K, by limiting the Seebeck coefficient's reduction by optimising TiC content to 1.5 vol% while simultaneously increasing the electrical conductivity by ≈ 100% and reducing thermal conductivity by ≈ 40%. This ZT value is almost 90% higher than any value recorded in the literature for SiC.  相似文献   

15.
Ti matrix composites reinforced with 0.6?wt% reduced graphene oxide (rGO) sheets were fabricated using spark plasma sintering (SPS) technology at different sintering temperatures from 800?°C to 1100?°C. Effects of SPS sintering temperature on microstructural evolution and mechanical properties of rGO/Ti composites were studied. Results showed that with an increase in the sintering temperature, the relative density and densification of the composites were improved. The Ti grains were apparently refined owing to the presence of rGO. The optimum sintering temperature was found to be 1000?°C with a duration of 5?min under a pressure of 45?MPa in vacuum, and the structure of rGO was retained. At the same time, the reaction between Ti matrix and rGO at such high sintering temperatures resulted in uniform distribution of micro/nano TiC particle inside the rGO/Ti composites. The sintered rGO/Ti composites exhibited the best mechanical properties at the sintering temperature of 1000?°C, obtaining the values of micro-hardness, ultimate tensile strength, 0.2% yield strength of 224 HV, 535?MPa and 446?MPa, respectively. These are much higher than the composites sintered at the temperature of 900?°C. The fracture mode of the composites was found to change from a predominate trans-granular mode at low sintering temperatures to a ductile fracture mode with quasi-cleavage at higher temperatures, which is consistent with the theoretical calculations.  相似文献   

16.
The goal of this work was to separate the reaction and spark plasma sintering (SPS) effects during the in-situ synthesis of TiC in mechanically milled Ti–C–3Cu powder mixtures. The powders were milled for 3–10 min in a high-energy planetary ball mill. Structural changes occurring in the reaction mixtures during thermal explosion (TE) in a furnace and SPS in a graphite die were compared. Although the maximum temperature of TE reached the melting point of copper in some samples, no evidence of extensive melting was observed in the microstructure of the products of TE. The ignition and maximum temperatures of TE were found to decrease with increasing milling time of the mixture. In the mixture milled for 10 min, the maximum temperature of TE was only 820 °C. Melting of copper at the inter-particle contacts during SPS was observed in samples milled for 5–10 min (SPS at 900–980 °C) and caused the formation of TiC-depleted regions in the microstructure. Those regions were the re-solidified melt partially filling the pores between the agglomerates. Based on the analysis of the TE parameters in the mixtures and microstructures of the products of TE and SPS, melting during SPS was attributed to the effect of electric current (a high electric current density at the inter-particle contacts) and not to the heat of reaction. The hardness, compressive strength and Young's modulus of the sintered composites are reported. A TiC–Cu composite (milling time 5 min, SPS at 980 °C, relative density 93%) shows a compressive yield strength of 890 MPa and an ultimate compressive strength of 920 MPa.  相似文献   

17.
In this work, Amosic-3 SiC/SiC composites were irradiated to 10 dpa and 115 dpa with 300 keV Si ions at 300 °C. To evaluate its irradiation behaviour and investigate the underlying mechanism, nanoindentation, AFM, Raman and electron microscopy were utilized. Nanoindentation showed that although micromechanical properties declined after irradiation, hardness and Young’s modulus were maintained better under 115 dpa. AFM manifested differential swelling among PyC interface, fiber and matrix and SEM showed irradiation-induced partial interface debonding, which are both more obvious under 115 dpa. TEM revealed the generation and proliferation of amorphous regions, which is according with the decline and broadening of peaks in Raman spectra. The material was almost completely amorphous after irradiated to 10 dpa while recrystallization occurred under 115 dpa. All results mentioned above contribute to the decline of hardness and Young’s modulus and may explain why the micromechanical degradation was more significant under 10 dpa.  相似文献   

18.
SiC-coated three-dimensional (3D) C/SiC composites were successfully joined with a Ni-Ti-Nb multi-interlayer by spark plasma sintering (SPS). The interfacial microstructure, phase evolution, and mechanical properties of the as-prepared joints were investigated. A sawtooth-like interfacial structure was generated as a result of the non-uniform dissolution behavior of SiC during the joining process. This interfacial structure substantially enhanced the interfacial bonding strength of the composites. The evolution of the interfacial microstructure was correlated with the mechanical properties of the joints. Finally, a reliable joint free of microdefects with a shear strength of 108 ± 5 MPa was obtained by precise tailoring of the interfacial microstructure.  相似文献   

19.
Three WC-Ti powder mixtures with 5, 10 and 15 wt% titanium were sintered by the spark plasma sintering technique. The microstructures and phase compositions of the samples were investigated by SEM, STEM, EBSD and XRD. The samples consisted of WC, W2C and a (W1-xTx)C phases when the starting amounts of titanium were 5 and 10 wt%. At the titanium content of 15 wt% the microstructure of the samples included W2C, (W1-xTx)C phases and elemental tungsten. The solubility of WC in TiC with the appearance of the (W1-xTx)C phase depended on the stoichiometry of the starting powder composition and sintering temperature. The results of EBSD phase mapping and the XRD investigation are in good agreement with the molar analysis. The best combination of hardness and fracture toughness was achieved with 5 wt% titanium. The appearance of elemental tungsten after sintering the WC-15Ti composition led to a significant reduction in hardness.  相似文献   

20.
Boron carbide composites with 10 vol.% TiB2 were prepared by reactive sintering of B4C, TiO2, and carbon black powder mixture at the temperature of 1800 °C, under a pressure of 70 MPa in a vacuum. The combined effects of electric current and in-situ reactions led to a significant overheating of the central part of the sample, while no overheating was observed for hot press and non-reactive SPS processes. A lower electrical resistivity of TiB2 produced a significant Joule heating of boron carbide, leading to its partial decomposition to form gaseous boron and graphene platelets. Homogenous, fully dense and graphene-free samples were obtained when employing an insulating Al2O3 paper during reactive SPS. A short dwell time (30 s after a degassing step of 6 min) and the uniform distribution of fine TiB2 grains were the main advantages of isolated SPS over the reactive hot press and SPS processes, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号