首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Crystallisation of molten blast furnace (BF) slag can increase its viscosity, which can in turn affect the quality of slag fibres. Fly ash was added to BF slag to control its crystallisation and modify its chemical composition. FactSage simulation and analyses using X-ray diffraction (XRD), scanning electron microscope-backscattered electrons (SEM-BSE) coupled to an energy dispersive spectrometer (EDS), and single hot thermocouple technique (SHTT) were performed to explore the crystallisation behaviour of the modified BF slag. The relationship between temperature, mineral precipitation, and added fly ash content was investigated. The minerals contained in the modified BF were melilite, anorthite, clinopyroxene, and spinel. Variation in the fly ash content did not change the composition of the precipitate, but changed its content and the crystallisation temperature of the minerals, which affects the initial crystallisation temperature of the modified BF slag. It decreased as fly ash content increased, and was influenced by the crystallisation of melilite when the added fly ash content was between 5% and 20%. When the added fly ash content increased to 25%, the initial crystallisation temperature was influenced by the precipitation of anorthite. The initial crystallisation temperatures obtained by FactSage simulation, XRD analysis, and SHTT experiments differed due to kinetic effects. The modified BF slag with a fly ash content of 15% is considered suitable for manufacturing of slag fibres due to its low initial crystallisation temperature and cost.  相似文献   

2.
Blast furnace water-cooled slag (BFWS) has been solidified hydrothermally with tobermorite formation. The experimental results showed that the addition of fly ash and quartz was favorable to the formation of tobermorite, and the strength development of solidified body depended on both of the tobermorite formation and filling degree of formed tobermorite in the spaces between BFWS particles. The fly ash added appeared to have a higher reactivity than the quartz used during the initial hydrothermal processing due to the higher solubility of glassy phase in fly ash. The tobermorite formation seemed to be very sensitive to the fly ash content, e.g., the addition of fly ash 10-20 mass% was favorable to tobermorite formation, while the excessive addition of fly ash (> 20 mass%) appeared to impede the tobermorite formation. The excessive addition of quartz was also shown to exert a negative effect on the tobermorite formation, which causes strength deduction.  相似文献   

3.
Geopolymer foam has emerged as a promising inorganic porous material in the last decade. Despite of the numerous advantages, there are some pending issues to be addressed, on top of that is the low compressive strength. To overcome this, this study synthesizes a high-strength geopolymer foam by the partial substitution of fly ash (FA) with ground granulated blast furnace slag and carries out an intensive investigation into its microstructure, pore properties, thermal conductivity as well as compressive behavior. The microstructure is firstly analyzed by X-ray diffraction and Fourier transform infrared spectroscopy techniques. The pore characteristics are also scrutinized, including pore size distribution, total porosity and water absorption. Then, the thermal conductivity is investigated and the applicability of basic effective thermal conductivity models to characterize the relationship with total porosity is evaluated. Afterward, the compressive strength together with the softening coefficient is examined, and the relationship with total porosity is also studied. Finally, comparisons between the proposed geopolymer foam and other FA-based geopolymer foams in the literature are performed. The results show that the proposed geopolymer foam possesses not only a comparable thermal conductivity but also a far superior compressive strength, which sheds light on the widespread applications in thermal insulation.  相似文献   

4.
Reactive powder concrete (RPC) is an ultra high strength cement-based material. Cement and silica fume (SF) content of RPC are generally rather high compared to the conventional concrete. The aim of this study is to decrease the cement and SF content of RPC using with fly ash (FA) and/or ground granulated blast furnace slag (GGBFS). The effect of these mineral admixtures on compressive strength of RPC has been investigated under autoclave curing. In the first stage, the effect of autoclave time and SF content on compressive strength was determined. In the second stage, SF was gradually decreased and cement was replaced with FA and/or GGBFS at different proportions. The microstructure was investigated by scanning electron microscope (SEM). Test results indicate that, the utilization of FA and/or GGBFS in RPC is possible without significant mechanical performance loss. SEM micrographs revealed the tobermorite having different morphology.  相似文献   

5.
The addition of ultrafine powder (UFP) to concrete can improve the fluidity of concrete, showing a water-reducing effect. The aim of this article was to analyze the water-reducing mechanism of UFP both experimentally and theoretically. Three UFPs—fine ground slag, high-calcium fly ash, and low-calcium fly ash—were chosen for the study. The contrastive experiments were done to investigate the fluidity of mortars with 30%, 45%, 60%, and 75% equivalent cement replaced by fine ground slag, high-calcium fly ash, and low-calcium fly ash, respectively. The results showed the physical and chemical characteristic of the powders, such as their grain morphology, glass phase activities, densities, specific areas, and their grain cumulating conditions, can strongly affect their water-reducing effect.  相似文献   

6.
The effects of high temperature on the mechanical properties of cement based mortars containing pumice and fly ash were investigated in this research. Four different mortar mixtures with varying amounts of fly ash were exposed to high temperatures of 300, 600, and 900 °C for 3 h. The residual strength of these specimens was determined after cooling by water soaking or by air cooling. Also, microstructure formations were investigated by X-ray and SEM analyses.Test results showed that the pumice mortar incorporating 60% fly ash revealed the best performance particularly at 900 °C. This mixture did not show any loss in compressive strength at all test temperatures when cooled in air. The superior performance of 60% FA mortar may be attributed to the strong aggregate-cement paste interfacial transition zone (ITZ) and ceramic bond formation at 900 °C. However, all mortar specimens showed severe losses in terms of flexural strength. Furthermore, specimens cooled in water showed greater strength loss than the air cooled specimens. Nevertheless, the developed pumice, fly ash and cement based mortars seemed to be a promising material in preventing high temperature hazards.  相似文献   

7.
In order to realize the value-added resource utilization of solid waste, geopolymer particle adsorbents were prepared at low temperatures using silica-aluminum-rich fly ash and steel slag powders as raw materials. In order to investigate the mechanism of their adsorption of dyes and heavy metal ions from wastewater, the effects of steel slag/fly ash ratio, adsorbent dosage, initial concentration of methylene blue (MB) and Cu2+ solution, adsorption time and temperature on the adsorption performance of the fly ash/steel slag-based geopolymer adsorbents were investigated, systematically. Results presented that the adsorption capacities of MB and Cu2+ were 33.30 and 24.15 mg/g, and the removal efficiencies were 99.90% and 96.59% with the dosages of 3 and 4 g/L geopolymer adsorbents (steel slag/fly ash ratio of 20 wt.%), respectively. The adsorption processes of MB and Cu2+ on the adsorbents were in accordance with the proposed pseudo-second-order and Langmuir isotherm models, which mainly included physical and chemical adsorption mechanisms. The adsorption was a spontaneous endothermic process. The fly ash/steel slag-based geopolymer had good removal ability for dyes and heavy metal ions, and it could maintain good adsorption performance after three cycles of regeneration. It had potential application in wastewater treatment.  相似文献   

8.
Geopolymerisation of mechanically activated fly ash was studied at ambient (27 °C) and elevated (60 °C) temperatures by isothermal conduction calorimeter. Under both the conditions, mechanical activation enhanced the rate and decreased time of reaction. It was interesting to observe that in the samples milled for 45 min (median size ∼5 μm), a broad peak corresponding to geopolymerisation initiated at 27 °C after 32 h. The rate maxima at 60 °C, a measure of fly ash reactivity, showed a non-linear dependence on particle size and increased rapidly when the median size was reduced to less than 5-7 μm. Improvement in strength properties is correlated with median particle size, and reactivity of fly ash. The characterisation of the geopolymer samples by SEM-EDS, XRD and FTIR revealed that mechanical activation leads to microstructure and structural variations which can be invoked to explain the variation in the properties.  相似文献   

9.
ASTM C 618 prohibits use of biomass fly ashes in concrete. This document compares the properties of biomass fly ashes from cofired (herbaceous with coal), pure wood combustion and blended (pure wood fly ash blended with coal fly ash) to those of coal fly ash in concrete. The results illustrate that with 25% replacement (wt%) of cement by fly ash, the compressive strength (one day to one year) and the flexure strength (at 56th day curing) of cofired and blended biomass fly ash concrete is statistically equal to that of two coal fly ash concrete in this investigation (at 95% confidence interval). This implies that biomass fly ash with co-firing concentration within the concentration interest to commercial coal-biomass co-firing operations at power plants and blended biomass fly ash within a certain blending ratio should be considered in concrete.  相似文献   

10.
《Ceramics International》2022,48(13):18224-18237
The existing fly ash-slag foaming geopolymer materials generally have the shortcomings of low fly ash content and low porosity. It is urgent to develop geopolymer foaming materials with high fly ash content and high porosity. Using fly ash and slag as the main raw materials, geopolymer foaming materials were prepared by alkali activation. The effects of activator content and sodium silicate modulus on the macroscopic mechanical properties, pore structures and microstructures of geopolymer foaming materials were studied. The experimental results showed that when the activator content was 21% (wt.) and the modulus of sodium silicate was 1, the specimen exhibited the best performance. The compressive strength of the specimen reached 2.18 MPa at 28 d, the porosity was 63.07%, and the average pore sizes of macroscopic pores were 920 μm. Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) and Scanning Electron Microscopy and Energy Dispersive Spectrometer (SEM-EDS) analysis showed that when the content of activator was 21% and the modulus of sodium silicate was 1, the reaction grade of the system was the highest, reached 55.12%, meanwhile the main product Sodium silicate hydrate (N-A-S-H) gel produced the largest amount. The fractal dimension calculations showed that the spatial complexity of a specimen with large pores was greater than that of a specimen with small pores. This study can provide a basis for the design of geopolymer foaming materials with high proportion of fly ash and high porosity.  相似文献   

11.
《Ceramics International》2015,41(4):5945-5958
This paper presents the results of an experimental study on the behavior of fly ash-, bottom ash- and blended fly and bottom ash-based geopolymer concrete (GPC) cured at ambient temperature. A total of 10 bathes of GPC and a single batch of ordinary Portland cement concrete (OPC) were manufactured. The tests of compressive strength, elastic modulus, flexural strength, workability, drying shrinkage and absorption capacity were carried out to determine the properties of fresh concrete and mechanical and durability-related properties of hardened concrete. Test parameters included the mass ratio of fly ash-to-bottom ash, liquid alkaline-to-coal ash binder ratio, coal ash content and concrete type. The results indicate that the selected parameters significantly affect the microstructure and the behavior of GPCs. It is seen that bottom ash-based GPCs exhibited significantly lower geopolymerization than that of the fly ash-based GPCs, resulting in the inferior behavior of the former compared to the latter.  相似文献   

12.
《Ceramics International》2022,48(14):20426-20437
The present study aims at preparing lightweight slag based geopolymer (LW-SG) and studying its mechanical properties under dynamic and quasi-static loads. Firstly, three LW-SG with different densities were prepared by replacing the slag with expanded perlite (EP). Secondly, the density, wave velocity and pore structure of LW-SG with different EP contents were tested. Thirdly, the mechanical properties under quasi-static and dynamic loads were compared. Finally, the effects of the strain rate and EP content on the mechanical properties and failure modes of LW-SG were discussed. The results showed that with the EP contents increase, the dry density and longitudinal wave velocity gradually decreased, while the porosity increased. In addition, the quasi-static compressive strength and elastic modulus of LW-SG increased with curing ages, but decreased with EP contents increased. The dynamic compressive strength, dynamic increase factor, strain energy density and damaged degree of LW-SG all showed an increasing tendency with the strain rates increase, which exhibits an obvious strain rate dependence. Under the same strain rate, the dynamic compressive strength and strain energy density decreased with the EP contents increase, while the damaged degree increased with the EP contents increase.  相似文献   

13.
《Ceramics International》2023,49(8):11978-11988
A novel approach for preparing thermal insulation materials by microwave sintering of ferronickel slag (FNS) in the presence of fly ash cenosphere (FAC) was proposed and evaluated. The study showed that during microwave radiation, the contact interface between FNS and FAC would preferentially form magnesium iron chromate spinel and magnesium iron aluminate spinel particles as hot spots by absorbing microwave vigorously, promoting decomposition and transformation of the raw materials into the thermal insulation phases, mainly cordierite and enstatite. After sintering at 900 °C by microwave for only 20 min with the addition of 25 wt% FAC, a thermal insulation material with thermal conductivity of 0.41 W/(m·K), bulk density of 1.46 g/cm3, compressive strength of 30.72 MPa, water absorption of 21.07%, and linear shrinkage of 7.06% was obtained. Compared with the conventional sintering method, the temperature was reduced by 300 °C, with the sintering time shortened by 6 times. This study represents a good example for clean and efficient value-added utilization of FNS, FAC and other relavent solid wastes.  相似文献   

14.
This paper presents the results of a study on the effect of elevated temperatures on geopolymers manufactured using metakaolin and fly ash of various mixture proportions. Both types of geopolymers (metakaolin and fly ash) were synthesized with sodium silicate and potassium hydroxide solutions.

The strength of the fly ash-based geopolymer increased after exposure to elevated temperatures (800 °C). However, the strength of the corresponding metakaolin-based geopolymer decreased after similar exposure. Both types of geopolymers were subjected to thermogravimetric, scanning electron microscopy and mercury intrusion porosimetry tests. The paper concludes that the fly ash-based geopolymers have large numbers of small pores which facilitate the escape of moisture when heated, thus causing minimal damage to the geopolymer matrix. On the other hand, metakaolin geopolymers do not possess such pore distribution structures. The strength increase in fly ash geopolymers is also partly attributed to the sintering reactions of un-reacted fly ash particles.  相似文献   


15.
《Ceramics International》2022,48(10):14076-14090
Environmental issues caused by glass fiber reinforced polymer (GFRP) waste have attracted much attention. The development of cost-effective recycling and reuse methods for GFRP composite wastes is therefore essential. In this study, the formulation of the GFRP waste powder replacement was set at 20–40 wt%. The geopolymer was formed by mixing GFRP powder, fly ash (FA), steel slag (SS) and ordinary Portland cement (OPC) with a sodium-based alkali activator. The effects of GFRP powder content, activator concentration, liquid to solid (L/S) ratio, and activator solution modulus on the physico-mechanical properties of geopolymer mixtures were identified. Based on the 28-day compressive strength, the optimal combination of the geopolymer mixture was determined to be 30 wt% GFRP powder content, an activator concentration of 85%, L/S of 0.65, and an activator solution modulus of 1.3. The ratios of compressive strength to flexural strength of the GFRP powder/FA-based geopolymers were considerably lower than those of the FA/steel slag-based geopolymers, which indicates that the incorporation of GFRP powder improved the geopolymer brittleness. The incorporation of 30% GFRP powder in geopolymer concrete to replace FA can enhance the compressive and flexural strengths of geopolymer concrete by 28%. After exposure to 600 °C, the flexural strength loss for geopolymer concretes containing 30 wt% GFRP powder was less than that of specimens without GFRP powder. After exposure to 900 °C, the compressive strength and flexural strength losses of geopolymer concretes containing 30 wt% GFRP powder were similar to those of specimens without GFRP powder. The developed GFRP powder/FA-based geopolymers exhibited comparable or superior physico-mechanical properties to those of the FA-based geopolymers, and thus offer a high application potential as building construction material.  相似文献   

16.
《Ceramics International》2019,45(11):13692-13700
Glass ceramics with different Al/Na molar ratio from blast furnace slag were prepared using conventional melting-casting method. The structure and properties of glasses or glass ceramics were investigated by DSC, Raman, MAS NMR, XRD, and SEM. The DSC results indicated that the thermal stability (ΔT = Tc-Tg) and crystallization temperature (Tc) of the parent glass firstly increased and then decreased when Al/Na exceeded 1.21. The Raman and 27Al MAS NMR spectra analysis revealed that [AlO6] increased positively with Al2O3/Na2O. The calculation of Qn ([SiO4] units with bridging oxygen atoms number of n) suggested an obvious decline of (Q0+Q2)/(Q1+Q3) and that [SiO4] mainly existed in the form of Q1 when Al/Na exceeded 1.21, which accorded closely with Tc variation. The crystallization results determined by XRD showed that as Al/Na increased, the main crystal phase was transformed from akermanite to gehlenite and nepheline disappeared. Glass ceramics with Al/Na of 1.48 nucleated at 780 °C for 2 h and crystallized at 880 °C for 3 h exhibited the maximum value of flexural strength. Orthogonal experiment (L9(34)) were carried out to investigated the optimum heat treatment of glass ceramics with a Al/Na of 1.48. The analyses indicated that nucleation time variation has little influence on the flexural strength, and the optimum heat treatment was determined as 760 °C – 1 h–900 °C – 1 h and the flexural strength was characterized as 81.310 MPa.  相似文献   

17.
《Ceramics International》2020,46(6):7550-7558
Anorthite-based ceramics were produced entirely from coal fly ash and steel slag. The effect of the CaO/SiO2 ratio (0.12–0.8) on the phase transitions was examined by adding steel slag to coal fly ash in the range of 10–50 wt%, and a temperature range of 900–1200 °C. The influence of CaO/SiO2 and sintering temperatures on the technological properties were assessed by response surface methodology (RSM) and correlated with the phase changes. The results revealed that anorthite was the main phase for the CaO/SiO2 ratio ranging from 0.12 to 0.56, while at 1200 °C, a ratio of 0.8 involved a high content of gehlenite. RSM showed that the CaO/SiO2 ratio was the main influencing factor on the density, while the variation of apparent porosity and compressive strength were more affected by sintering temperature. The crystallisation of the anorthite phase significantly enhanced the properties of the obtained ceramics, whereas the appearance of gehlenite reduced the mechanical strength. The optimum conditions to fabricate anorthite-based ceramics with suitable properties were found to be a CaO/SiO2 ratio of 0.46 and a temperature of 1188 °C. The optimised anorthite-based ceramic exhibited a low thermal conductivity (0.39 W/m.K) and a dielectric constant of 6.03 at 1 MHz, along with a compressive strength of 41 MPa, which makes this sample a potential candidate for insulator applications.  相似文献   

18.
In this study, the effect of nano silica on the short term severe durability performance of fly ash based geopolymer concrete (GPC) specimens was investigated. Four types of GPC were produced with two types of low calcium fly ashes (FAI and FAII) with and without nano silica, and ordinary Portland cement concrete (OPC) concrete was also cast for reference. For the geopolymerization process, the alkaline activator has selected a mixture of sodium silicate solution (Na2SiO3) and sodium hydroxide solution (NaOH) with a ratio (Na2SiO3/ NaOH) of 2.5. Main objectives of the study were to investigate the effect of usability or replaceability of nano silica-based low calcium fly ash based geopolymer concretes instead of OPC concrete in structural applications and make a contribution to standardization process of the fly ash based geopolymer concrete. To achieve the goals, four types of geopolymer and OPC concretes were subjected to sulfuric acid (H2SO4), magnesium sulfate (MgSO4) and seawater (NaCl) solutions with concentrations of 5%, 5%, and 3.5%, respectively. Visual appearances and weight changes of the concretes under chemical environments were utilized for durability aspects. Compressive, splitting tensile and flexural strength tests were also performed on specimens to evaluate the mechanical performance under chemical environments. Results indicated that FAGPC concretes showed superior performance than OPC concrete under chemical attacks due to low calcium content. Amongst the chemical environments, sulfuric acid (H2SO4) was found to be the most dangerous environment for all concrete types. In addition, nano silica (NS) addition to FAGPC specimens improved both durability and residual mechanical strength due to the lower porosity and more dense structure. The FAIIGPC specimens including nano silica showed the superior mechanical performance under chemical environment.  相似文献   

19.
This paper presents the results of an experimental investigation carried out to evaluate the mechanical properties of concrete mixtures in which fine aggregate (sand) was partially replaced with Class F fly ash. Fine aggregate (sand) was replaced with five percentages (10%, 20%, 30%, 40%, and 50%) of Class F fly ash by weight. Tests were performed for properties of fresh concrete. Compressive strength, splitting tensile strength, flexural strength, and modulus of elasticity were determined at 7, 14, 28, 56, 91, and 365 days. Test results indicate significant improvement in the strength properties of plain concrete by the inclusion of fly ash as partial replacement of fine aggregate (sand), and can be effectively used in structural concrete.  相似文献   

20.
Environment friendly geopolymer is a new binder which gained increased popularity due to its better mechanical properties, durability, chemical resistance, and fire resistance. This paper presents the effect of nano silica and fine silica sand on residual compressive strength of sodium and potassium based activators synthesised fly ash geopolymer at elevated temperatures. Six different series of both sodium and potassium activators synthesised geopolymer were cast using partial replacement of fly ash with 1%, 2%, and 4% nano silica and 5%, 10%, and 20% fine silica sand. The samples were heated at 200°C, 400°C, 600°C, and 800°C at a heating rate 5°C per minute, and the residual compressive strength, volumetric shrinkage, mass loss, and cracking behaviour of each series of samples are also measured in this paper. Results show that, among 3 different NS contents, the 2% nano silica by wt. exhibited the highest residual compressive strength at all temperatures in both sodium and potassium‐based activators synthetised geopolymer. The measured mass loss and volumetric shrinkage are also lowest in both geopolymers containing 2% nano silica among all nano silica contents. Results also show that although the unexposed compressive strength of potassium‐based geopolymer containing nano silica is lower than its sodium‐based counterpart, the rate of increase of residual compressive strength exposed to elevated temperatures up to 400°C of potassium‐based geopolymer containing nano silica is much higher. It is also observed that the measured residual compressive strengths of potassium based geopolymer containing nano silica exposed at all temperatures up to 800°C are higher than unexposed compressive strength, which was not the case in its sodium‐based counterpart. However, in the case of geopolymer containing fine silica sand, an opposite phenomenon is observed, and 10% fine silica sand is found to be the optimum content with some deviations. Quantitative X‐ray diffraction analysis also shows higher amorphous content in both geopolymers containing nano silica at elevated temperatures than those containing fine silica sand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号